Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polybutylene/ethylene

Pol5fpropylene, polyethylene, polybutylene, ethylene vinyl acetate, ethylene methyl acrylate Melamine, m a... [Pg.617]

Polyethylene terephthalate [25038-59-9] (8) is a polyester produced by the condensation polymerization of dimethyl terephthalate and ethylene glycol. Polyethylene terephthalate sutures are available white (undyed), or dyed green with D C Green No. 6, or blue with D C Blue No. 6. These may be coated with polybutylene adipate (polybutilate), polyydimethylsiloxane, or polytetrafiuoroethylene [9002-84-0]. The sutures are distributed under the trade names Ethibond Exel, Mersdene, Polydek, Silky II Polydek, Surgidac, Tevdek II, Polyester, and Tl.Cron. [Pg.269]

Fig. 11. Effect of polyolefin primers on bond strength of ethyl cyanoacrylate to plastics. All assemblies tested in accordance with ASTM D 4501 (block shear method). ETFE = ethylene tetrafluoroethylene copolymer LDPE = low-density polyethylene PFA = polyper-fluoroalkoxycthylene PBT = polybutylene terephthalate, PMP = polymethylpentene PPS = polyphenylene sulfide PP = polypropylene PS = polystyrene PTFE = polytetrafluoroethylene PU = polyurethane. From ref. [73]. Fig. 11. Effect of polyolefin primers on bond strength of ethyl cyanoacrylate to plastics. All assemblies tested in accordance with ASTM D 4501 (block shear method). ETFE = ethylene tetrafluoroethylene copolymer LDPE = low-density polyethylene PFA = polyper-fluoroalkoxycthylene PBT = polybutylene terephthalate, PMP = polymethylpentene PPS = polyphenylene sulfide PP = polypropylene PS = polystyrene PTFE = polytetrafluoroethylene PU = polyurethane. From ref. [73].
Polybutylene terephdialate (PBT) has been produced from PET scrap by transesterification widi 1,4-butanediol.1 In die process, classified and cleaned polymer Bake from postconsumer PET bottles is reacted witit 1,4-butanediol in an extruder. PBT is used as an engineering plastic. Ethylene glycol and tetrahydrol uran produced as by-products are recovered by distillation. [Pg.545]

More recently, two-state E/B models have been proposed by Chujo and Doi (9.10) for the analysis of polypropylene. Similar E/B models were proposed by Cheng(11) and Asakura, et al(12) for polybutylene. For copolymers, two-state B/B models have been proposed for ethylene-propylene copolymers,(11,13-15) and propylene-butylene copolymers.(11,13) Recently, Cheng(11) generalized these multi-state models and developed computer methodology for the general analysis of such systems. A number of polymer systems were treated. [Pg.175]

In addition to the desired polymerization reaction, the dialcohol reactants can participate in deleterious side reactions. Ethylene glycol, used in the manufacture of polyethylene terephthalate, can react with itself to form a dialcohol ether and water as shown in Fig. 24.4a). This dialcohol ether can incorporate into the growing polymer chain because it contains terminal alcohol units. Unfortunately, this incorporation lowers the crystallinity of the polyester on cooling which alters the polymer s physical properties. 1,4 butanediol, the dialcohol used to manufacture polybutylene terephthalate, can form tetrahydrofuran and water as shown in Fig. 24.4b). Both the tetrahydrofuran and water can be easily removed from the melt but this reaction reduces the efficiency of the process since reactants are lost. [Pg.374]

The other severe problem in the application of PET regarding food containers or bottles is that these products cannot be hot-filled. This limitation is caused by the low Tg of PET, which causes shrinkage during hot-filling. Alternatively, multilayer containers can overcome the problems, but, however, at higher manufacturing costs. PET in combination with an intermediate layer of poly(ethylene-co-vinyl alcohol) (PEVOH) or polybutylene has been used in such... [Pg.479]

Abbreviations for plastics ABS, acrylonitrile-butadiene-styrene CPVC, chlorinated poly vinyl chloride ECTFE, ethylene-chlorotrifluoroethylene ETFE, ethylene-tetrafluoroethylene PB, polybutylene PE, polyethylene PEEK, poly ether ether ketone PFA, perfluoroalkoxy copolymer POP, poly phenylene oxide PP, polypropylene PVC, polyvinyl chloride PVDC, poly vinylidene chloride PVDF, poly vinylidene fluoride. [Pg.77]

Polybutylene dimethacrylate Ethylene Acrylic acid Methylacrylate Acrylonitrile Styrene Butylene dimethacrylate... [Pg.23]

MC MDI MEKP MF MMA MPEG MPF NBR NDI NR OPET OPP OSA PA PAEK PAI PAN PB PBAN PBI PBN PBS PBT PC PCD PCT PCTFE PE PEC PEG PEI PEK PEN PES PET PF PFA PI PIBI PMDI PMMA PMP PO PP PPA PPC PPO PPS PPSU Methyl cellulose Methylene diphenylene diisocyanate Methyl ethyl ketone peroxide Melamine formaldehyde Methyl methacrylate Polyethylene glycol monomethyl ether Melamine-phenol-formaldehyde Nitrile butyl rubber Naphthalene diisocyanate Natural rubber Oriented polyethylene terephthalate Oriented polypropylene Olefin-modified styrene-acrylonitrile Polyamide Poly(aryl ether-ketone) Poly(amide-imide) Polyacrylonitrile Polybutylene Poly(butadiene-acrylonitrile) Polybenzimidazole Polybutylene naphthalate Poly(butadiene-styrene) Poly(butylene terephthalate) Polycarbonate Polycarbodiimide Poly(cyclohexylene-dimethylene terephthalate) Polychlorotrifluoroethylene Polyethylene Chlorinated polyethylene Poly(ethylene glycol) Poly(ether-imide) Poly(ether-ketone) Polyethylene naphthalate Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde copolymer Perfluoroalkoxy resin Polyimide Poly(isobutylene), Butyl rubber Polymeric methylene diphenylene diisocyanate Poly(methyl methacrylate) Poly(methylpentene) Polyolefins Polypropylene Polyphthalamide Chlorinated polypropylene Poly(phenylene oxide) Poly(phenylene sulfide) Poly(phenylene sulfone)... [Pg.959]

Many other reports have demonstrated the smoke suppressing tendencies of hydrated fillers in various polymers including ethylene-propylene-diene elastomers,43 PP,38 polystyrene,49 modified polyphenylene oxide, polybutylene terephthalate, and ABS.37 In addition to suppressing smoke generation, a delay in the onset of smoke evolution is also achievable.25 Figure 7.5 illustrates smoke reductions obtained in PP. [Pg.173]

Within the family of polyolefins there are many individual families that include low density polyethylenes, linear low density polyethylenes, very low polyethylenes, ultra low polyethylenes, high molecular weight polyethylenes, ultra high molecular weight polyethylenes, polyethylene terephthalates, ethylene-vinyl acetate polyethylenes, chlorinated polyethylenes, crosslinked polyethylenes, polypropylenes, polybutylenes, polyisobutylene, ionomers, polymethylpentene, thermoplastic polyolefin elastomers (polyolefin elastomers, TP), and many others. [Pg.45]

Analytes CB, chlorobenzenes DDE, l,l-dichloro-2,3-bis(4-chlorophenyl)ethane DDT, l,l-dichloro-2,3-bis(4-chlorophenyl)ethylene DBF, decabromobiphenyls HBCD, Hexabromo-cyclododecane HpBB, heptabromobiphenyl PBB, polybrominated biphenyl PBCCH, pentabromochlorocyclohexane PBDE, polybrominated diphenyl ether PBT, Polybutylene terephthalate PCB, Polychlorinated biphenyl PBDD, polybrominated dibenzo-/ -dioxins PBDF, polybrominated dibenzofuranes PCN, polychlorinated naphthalenes PCP, polychlorinated phenols PBB, polybrominated biphenyl PeBDE, pentabromodiphenyl ether PET, Polyethylene terephthalate PXDDs, polyhalogenated dibenzo-p-dioxins PXDFs, polyhalogenated dibenzofurans TBBPA, tetrabromobisphenol A TBPA, tetrabromophthalic anhydride TCBPA, tetrachlorobisphenol A TDBPP, tris(2,3-dibromopropyl)phosphate. [Pg.1209]

COl, PP/PE copolymer ( 7371 from Fina) C02, PP/PE copolymer ( 6571 from Fina) EAA, ethylene/acryUc acid copolymer (PRIMACOR , 3340 from Dow) EVAc, ethylene/vinyl acetate copolymer ( UE656 from Quantum) PB, polybutylene ( PB400 from Shell) PP, polypropylene ( PP3576 from Fina, and 5A95 from Shell). [Pg.781]

Nonolefinic thermoplastic polymers that in principle may be blended with polyolefins include polyamides (nylons) such as polyamide 6, polyamide 66, polyphenylene sulfide (PPS), polyphenylene ether (PPF), and polyphenylene oxide (PPO) polyesters such as polyethylene terephthalate (PET), polybutylene terephtha-late (PBT), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), polycarbonates, polyethers, and polyurethanes vinyl polymers such as polystyrene (PS), polyvinyl chloride (PVC), polymethylmethacrylate (PMMA), and ethylene... [Pg.8]

Polybutylene acrylate PBA Ethylene/vinyl alcohol EVOH... [Pg.481]

Plastics find extensive use in several areas of fiber optic cables. Buffer tubes, usually extruded from high-performance plastics such as fluoropolymers, nylon, acetal resins, or polybutylene terephthalate (PBT) are used for sheathing optical fibers. A blend o PVC and ethylene vinyl acetate (EVA) polymer, such as Pantalast 1162 of Pantasote Incorporated, does not require a plasticizer, which helps the material maintain stability when in contact with water-proofing materials. PVC and elastomer blends, Carloy 6190 and 6178, of Cary Chemicals are also used for fiber optic applications (Stiffening rods for fiber optics are either pultruded epoxy and glass or steel. Around these is the outer jacketing, which is similar to conventional cable.)... [Pg.780]

The addition of a polypropylene grafted maleic anhydride (PP-g-MA) compatibilizer into polypropylene-co-ethylene/polybutylene succinate blends and the subsequent irradiation allowed prevention of degradation mechanisms leading to mechanical stability. The cyclic anhydride group of the PP-g-MA first permitted compatibilizion of both polypropylene-co-ethylene and polybutylene succinate and a second action as an "energy sink."... [Pg.281]

PBS polybutylene succinate, PBSA polybutylene succinate adipate copolymer, PES poly(ethylene succinate)... [Pg.374]


See other pages where Polybutylene/ethylene is mentioned: [Pg.341]    [Pg.887]    [Pg.333]    [Pg.377]    [Pg.377]    [Pg.303]    [Pg.368]    [Pg.1335]    [Pg.643]    [Pg.888]    [Pg.23]    [Pg.2]    [Pg.42]    [Pg.1144]    [Pg.547]    [Pg.468]    [Pg.213]    [Pg.424]    [Pg.145]    [Pg.2]    [Pg.479]    [Pg.44]   


SEARCH



© 2024 chempedia.info