Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacrylonitrile temperatures

The way in which these factors operate to produce Type III isotherms is best appreciated by reference to actual examples. Perhaps the most straightforward case is given by organic high polymers (e.g. polytetra-fluoroethylene, polyethylene, polymethylmethacrylate or polyacrylonitrile) which give rise to well defined Type III isotherms with water or with alkanes, in consequence of the weak dispersion interactions (Fig. S.2). In some cases the isotherms have been measured at several temperatures so that (f could be calculated in Fig. 5.2(c) the value is initially somewhat below the molar enthalpy of condensation and rises to qi as adsorption proceeds. In Fig. 5.2(d) the higher initial values of q" are ascribed to surface heterogeneity. [Pg.249]

The low-temperature (remember that this is a relative term Tj = 317°C for polyacrylonitrile) behavior of linear polymers may conveniently be divided into three regimes ... [Pg.202]

Process. Any standard precursor material can be used, but the preferred material is wet spun Courtaulds special acrylic fiber (SAF), oxidized by RK Carbon Fibers Co. to form 6K Panox B oxidized polyacrylonitrile (PAN) fiber (OPF). This OPF is treated ia a nitrogen atmosphere at 450—750°C, preferably 525—595°C, to give fibers having between 69—70% C, 19% N density less than 2.5 g/mL and a specific resistivity under 10 ° ohm-cm. If crimp is desired, the fibers are first knit iato a sock before heat treating and then de-knit. Controlled carbonization of precursor filaments results ia a linear Dow fiber (LDF), whereas controlled carbonization of knit precursor fibers results ia a curly carbonaceous fiber (EDF). At higher carbonizing temperatures of 1000—1400°C the fibers become electrically conductive (22). [Pg.69]

Carbon Cha.in Backbone Polymers. These polymers may be represented by (4) and considered derivatives of polyethylene, where n is the degree of polymeriza tion and R is (an alkyl group or) a functional group hydrogen (polyethylene), methyl (polypropylene), carboxyl (poly(acryhc acid)), chlorine (poly(vinyl chloride)), phenyl (polystyrene) hydroxyl (poly(vinyl alcohol)), ester (poly(vinyl acetate)), nitrile (polyacrylonitrile), vinyl (polybutadiene), etc. The functional groups and the molecular weight of the polymers, control thek properties which vary in hydrophobicity, solubiUty characteristics, glass-transition temperature, and crystallinity. [Pg.478]

Polymer Solvent. Sulfolane is a solvent for a variety of polymers, including polyacrylonitrile (PAN), poly(vinyhdene cyanide), poly(vinyl chloride) (PVC), poly(vinyl fluoride), and polysulfones (124—129). Sulfolane solutions of PAN, poly(vinyhdene cyanide), and PVC have been patented for fiber-spinning processes, in which the relatively low solution viscosity, good thermal stabiUty, and comparatively low solvent toxicity of sulfolane are advantageous. Powdered perfluorocarbon copolymers bearing sulfo or carboxy groups have been prepared by precipitation from sulfolane solution with toluene at temperatures below 300°C. Particle sizes of 0.5—100 p.m result. [Pg.70]

Fig. 13. Scanning election micrograph of polyacrylonitrile fibrils formed by spraying a 0.05 wt % polyacrylonitrile in dimetbylform amide solution into CO2 through a 50-//m inner diameter, 18-cm-long no22le at a temperature of 40°C, density of 0.66 g/mL, and solution flow rate of 0.36 ml,/min (118). Fig. 13. Scanning election micrograph of polyacrylonitrile fibrils formed by spraying a 0.05 wt % polyacrylonitrile in dimetbylform amide solution into CO2 through a 50-//m inner diameter, 18-cm-long no22le at a temperature of 40°C, density of 0.66 g/mL, and solution flow rate of 0.36 ml,/min (118).
This combination of monomers is unique in that the two are very different chemically, and in thek character in a polymer. Polybutadiene homopolymer has a low glass-transition temperature, remaining mbbery as low as —85° C, and is a very nonpolar substance with Htde resistance to hydrocarbon fluids such as oil or gasoline. Polyacrylonitrile, on the other hand, has a glass temperature of about 110°C, and is very polar and resistant to hydrocarbon fluids (see Acrylonitrile polymers). As a result, copolymerization of the two monomers at different ratios provides a wide choice of combinations of properties. In addition to providing the mbbery nature to the copolymer, butadiene also provides residual unsaturation, both in the main chain in the case of 1,4, or in a side chain in the case of 1,2 polymerization. This residual unsaturation is useful as a cure site for vulcanization by sulfur or by peroxides, but is also a weak point for chemical attack, such as oxidation, especially at elevated temperatures. As a result, all commercial NBR products contain small amounts ( 0.5-2.5%) of antioxidant to protect the polymer during its manufacture, storage, and use. [Pg.516]

Bead Polymerization Bulk reaction proceeds in independent droplets of 10 to 1,000 [Lm diameter suspended in water or other medium and insulated from each other by some colloid. A typical suspending agent is polyvinyl alcohol dissolved in water. The polymerization can be done to high conversion. Temperature control is easy because of the moderating thermal effect of the water and its low viscosity. The suspensions sometimes are unstable and agitation may be critical. Only batch reaciors appear to be in industrial use polyvinyl acetate in methanol, copolymers of acrylates and methacrylates, polyacrylonitrile in aqueous ZnCh solution, and others. Bead polymerization of styrene takes 8 to 12 h. [Pg.2102]

Because of their unique blend of properties, composites reinforced with high performance carbon fibers find use in many structural applications. However, it is possible to produce carbon fibers with very different properties, depending on the precursor used and processing conditions employed. Commercially, continuous high performance carbon fibers currently are formed from two precursor fibers, polyacrylonitrile (PAN) and mesophase pitch. The PAN-based carbon fiber dominates the ultra-high strength, high temperature fiber market (and represents about 90% of the total carbon fiber production), while the mesophase pitch fibers can achieve stiffnesses and thermal conductivities unsurpassed by any other continuous fiber. This chapter compares the processes, structures, and properties of these two classes of fibers. [Pg.119]

Because the polymer degrades before melting, polyacrylonitrile is commonly formed into fibers via a wet spinning process. The precursor is actually a copolymer of acrylonitrile and other monomer(s) which are added to control the oxidation rate and lower the glass transition temperature of the material. Common copolymers include vinyl acetate, methyl acrylate, methyl methacrylate, acrylic acid, itaconic acid, and methacrylic acid [1,2]. [Pg.120]

The commercial fibers are produced from rayon, polyacrylonitrile, and petroleum pitch. When acrylonitrile is heated in air at moderate temperatures (= 220°C ), HCN is lost, and a ladder polymer is thought to be the intermediate ... [Pg.370]

The final important form of carbon is the carbon fibre formed from polyacrylonitrile (PAN), cellulose or pitch and which is finding increasing ase in fibre-teinfbrced Composites. The corrosion of carbon fibril in composites designed for use under high temperature conditions is currently a severe limitation on their use. [Pg.864]

Figure 1. Temperature variation of the conductivity for a cross-section of polymer electrolytes. PESc, poly (ethylene succinate) PEO, polyethylene oxide) PPO, polypropylene oxide) PEI, poly(ethyleneimine) MEEP, poly(methoxyethoxy-ethoxyphosphazene) aPEO, amorphous methoxy-linked PEO PAN, polyacrylonitrile PC, propylene carbonate EC, ethylene carbonate. Figure 1. Temperature variation of the conductivity for a cross-section of polymer electrolytes. PESc, poly (ethylene succinate) PEO, polyethylene oxide) PPO, polypropylene oxide) PEI, poly(ethyleneimine) MEEP, poly(methoxyethoxy-ethoxyphosphazene) aPEO, amorphous methoxy-linked PEO PAN, polyacrylonitrile PC, propylene carbonate EC, ethylene carbonate.
Polydithiazoles Polyoxadiazoles Polyamidines Pyrolyzed polyacrylonitrile Polyvinyl isocyanate ladder polymer Polyamide-imide Polysulfone Decompose at 525°C (977°F) soluble in concentrated sulfuric acid. Decompose at 450-500°C (842-932°F) can be made into fiber or film. Stable to oxidation up to 500°C (932°F) can make flexible elastomer. Stable above 900°C (1625°F) fiber resists abrasion with low tenacity. Soluble polymer that decomposes at 385°C (725°F) prepolymer melts above 405° C (76l.°F). Service temperatures up to 288° C (550°F) amenable to fabrication. Thermoplastic use temperature —102°C (—152°F) to greater than 150° C (302°F) acid and base resistant. [Pg.320]

Wang et al. [96] constructed a Na/S battery with a sodium metal anode, liquid electrolyte, and a sulfur (dispersed in polyacrylonitrile) composite cathode and tested its electrochemical characteristics at room temperature. The charge/discharge curves indicated that sodium could reversibly react with the composite cathode at room temperature. Average charge and discharge voltage was 1.8 and 1.4 V, respectively. Similar to lithium batteries, dendrite formation was noted as a critical problem for these cells. [Pg.333]

The proposed model for creep rupture based on the condition of maximum shear strain and the Eyring reduced time model explain the observed relations concerning the lifetime of aramid, polyamide 66 and polyacrylonitrile fibres. However, with increasing temperatures, in particular above 300 °C, chemical degradation of PpPTA also determines the lifetime. Furthermore, the model... [Pg.113]

Exposed to HCN gas produced from combustion of polyacrylonitrile materials at various temperatures... [Pg.946]

Polymerization of acrylonitrile adsorbed on polyacrylonitrile" An intimate mixture of polyacrylonitrile solvated by its monomer is obtained if one melts acrylonitrile crystals which have been subjected to high energy radiation at low temperatures. The polymer forms under irradiation within the crystal lattice and upon melting, a gel-like phase is obtained in which the individual polymer molecules do not aggregate, presumably because most of the CN groups are then associated in pairs with the -CN groups of the monomer. Such a polyacrylonitrile solvated by its monomer should indeed be an ideal medium for the matrix effect to operate. [Pg.247]

The ruthenium(II) polypyridyl complexes are also popular but the brightnesses do not exceed 15,000 and thermal quenching is rather significant. This property can be utilized to design temperature-sensitive probes providing that the dyes are effectively shielded from oxygen (e.g., in polyacrylonitrile beads). Despite often very high emission quantum yields the visible absorption of cyclometallated complexes of iridium(III) and platinum(II) is usually poor (e < 10,000 M-1cm-1), thus,... [Pg.198]

Polyacrylonitrile. Polyacrylonitrile (PAN) hbres are often called by the shortened name of acrylic hbres. PAN is made by the polymerisation of acrylonitrile incorporating small amounts of co-reactants, which provide anionic centres, snch as sulfonic acid or carboxylic acid gronps. These ionic centres make it possible to dye PAN hbres with basic or cationic dyes, from an aqneons dyebath at pH 3.5-6.0, at temperatures above 80 °C. [Pg.106]


See other pages where Polyacrylonitrile temperatures is mentioned: [Pg.124]    [Pg.68]    [Pg.433]    [Pg.495]    [Pg.438]    [Pg.603]    [Pg.356]    [Pg.915]    [Pg.77]    [Pg.309]    [Pg.920]    [Pg.306]    [Pg.362]    [Pg.382]    [Pg.384]    [Pg.479]    [Pg.519]    [Pg.535]    [Pg.243]    [Pg.244]    [Pg.248]    [Pg.248]    [Pg.214]    [Pg.90]    [Pg.473]    [Pg.122]    [Pg.155]    [Pg.225]   
See also in sourсe #XX -- [ Pg.920 ]




SEARCH



Polyacrylonitril

Polyacrylonitrile

Polyacrylonitrile glass transition temperature

Polyacrylonitriles

© 2024 chempedia.info