Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacrylonitrile polyimide

Eq. (5) in conjunction with Eqs. (8) and (9) have, so far, provided adequate representation of experimental isotherms6 32, which are characterized by an initial con vex-upward portion but tend to become linear at high pressures. Values of K, K2 and s0 have been deduced by appropriate curve-fitting procedures for a wide variety of polymer-gas systems. Among the polymers involved in recent studies of this kind, one may cite polyethylene terephthalate (PET) l2 I4), polycarbonate (PC) 19 22,27), a polyimide l6,17), polymethyl and polyethyl methacrylates (PMMA and PEMA)l8), polyacrylonitrile (PAN)15), a copolyester 26), a polysulphone 23), polyphenylene oxide (PPO)25), polystyrene (PS) 27 28), polyvinyl acetate 29) and chloride 32) (PVAc and PVC), ethyl cellulose 24) (EC) and cellulose acetate (CA) 30,3I>. A considerable number of gases have been used as penetrants, notably He, Ar, N2, C02, S02 and light hydrocarbons. [Pg.97]

MC MDI MEKP MF MMA MPEG MPF NBR NDI NR OPET OPP OSA PA PAEK PAI PAN PB PBAN PBI PBN PBS PBT PC PCD PCT PCTFE PE PEC PEG PEI PEK PEN PES PET PF PFA PI PIBI PMDI PMMA PMP PO PP PPA PPC PPO PPS PPSU Methyl cellulose Methylene diphenylene diisocyanate Methyl ethyl ketone peroxide Melamine formaldehyde Methyl methacrylate Polyethylene glycol monomethyl ether Melamine-phenol-formaldehyde Nitrile butyl rubber Naphthalene diisocyanate Natural rubber Oriented polyethylene terephthalate Oriented polypropylene Olefin-modified styrene-acrylonitrile Polyamide Poly(aryl ether-ketone) Poly(amide-imide) Polyacrylonitrile Polybutylene Poly(butadiene-acrylonitrile) Polybenzimidazole Polybutylene naphthalate Poly(butadiene-styrene) Poly(butylene terephthalate) Polycarbonate Polycarbodiimide Poly(cyclohexylene-dimethylene terephthalate) Polychlorotrifluoroethylene Polyethylene Chlorinated polyethylene Poly(ethylene glycol) Poly(ether-imide) Poly(ether-ketone) Polyethylene naphthalate Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde copolymer Perfluoroalkoxy resin Polyimide Poly(isobutylene), Butyl rubber Polymeric methylene diphenylene diisocyanate Poly(methyl methacrylate) Poly(methylpentene) Polyolefins Polypropylene Polyphthalamide Chlorinated polypropylene Poly(phenylene oxide) Poly(phenylene sulfide) Poly(phenylene sulfone)... [Pg.959]

Membranes comprising silicone rubber coated onto polyimides, polyacrylonitrile or other microporous supports membranes are widely used [12,27]. Other rubbers such as ethylene-propylene terpolymers have been reported to have good properties also [28]. Polyamide-polyether block copolymers have also been used for pervaporation of some polar VOCs [29,30]... [Pg.366]

Other membrane materials include mainly polyimide, polyacrylonitrile and polybenzimidazole. An overview of commercially available membranes is given in Table 3.2. These membranes are manufactured in procedures usually derived from practical experience by using high-throughput screening, it was shown that optimization is possible [26]. Many other membrane materials are described in the scientific literature and in patents an overview is given by Cuperus and Ebert [27]. [Pg.48]

Typical UF membrane materials are polysulfone (PS), poly ether sulfone (PES), polyetheretherketone (PEEK), cellulose acetate (CA), polyacrylonitrile (PAN), polyvinylidene fluoride (PVDF), polyimide (PI), and polyetherimide (PEI) ... [Pg.2330]

Membrane asymmetric homogeneous, or microporous (cellulose acetate, polyamide, polysulfone, polyacrylonitrile) composite of a homogeneous polymer film on microporous substructure (cellulose acetate, polyamide, polysulfone, polyimide, polyvinyl alcohol). Usual pore 0.1 to 0.2 jm. [Pg.1384]

AA acrylic acid LDPE low density polyethylene NBR poly (butadiene-acrylonitrile) PA polyamide PAA poly(acrylic acid) PAN polyacrylonitrile PB polybutadiene PC polycarbonate PDMS polydimetylsiloxane PE polyester PEBA polyetheramide-block-polymer PI polyimide PMA poly(methyl acrylate) POUA poly(oxyethylene urethane acrylate) PP polypropylene PPO poly(phenylene oxide) PTMSP poly(trimethylsilylpropyne) PUR polyurethane PVA poly(vinyl alcohol) PVC poly(vinyl chloride). [Pg.98]

Typical membranes prepared according to this synthesis procedure have chito-san, PVA (polyvinylalcohol), PPO (polyphenylene oxide), PDMS (polydimethyl si-loxane) or Nation top-layers. Typical support layers are made of PAN (polyacrylonitrile), PI (polyimide), PVDF (polyvinylidenedifluoride) or PSf (polysulfone). [Pg.261]

Porous membranes can be made of polymers (polysulfones, polyacrylonitrile, polypropylene, silicones, perfluoropolymers, polyimides, polyamides, etc.), ceramics (alumina, silica, titania, zirconia, zeolites, etc.) or microporous carbons. Dense organic membranes are commonly used for molecular-scale separations involving gas and vapor mixtures, whereas the mean pore sizes of porous membranes is chosen considering the size of the species to be separated. Current membrane processes include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), gas and vapor separation (GS), and pervaporation (PV). Figure 1 indicates the types and sizes of species typically separated by these different separation processes. [Pg.124]

Cellulose nitrate, silk, polyamides, polyimides, polyurethanes, polyacrylonitrile, SAN and ABS resins, urea formaldehyde resins, melamine-formaldehyde resins, etc Wool, polysulfones, ebonite, etc. [Pg.375]

Membrane permeation properties are largely governed by the pore sizes and the pore size distributions of UF membranes. Rather, thermal, chemical, mechanical, and biological stability are considered of greater importance. Typical UF membrane materials are polysulfone (PS), poly(ether sulfone), poly(ether ether ketone) (PEEK), cellulose acetate and other cellulose esters, polyacrylonitrile (PAN), poly(vinyKdene fluoride) (PVDF), polyimide (PI), poly(etherimide) (PEI), and aliphatic polyamide (PA). All these polymers have a Tg higher than 145 °C except for celliflose esters. They are also stable chemically and mechanically, and their biodegradabflity is low. The membranes are made by the dry-wet phase inversion technique. [Pg.13]

A suitable polymer material for preparation of carbon membranes should not cause pore holes or any defects after the carbonization. Up to now, various precursor materials such as polyimide, polyacrylonitrile (PAN), poly(phthalazinone ether sulfone ketone) and poly(phenylene oxide) have been used for the fabrication of carbon molecular sieve membranes. Likewise, aromatic polyimide and its derivatives have been extensively used as precursor for carbon membranes due to their rigid structure and high carbon yields. The membrane morphology of polyimide could be well maintained during the high temperature carbonization process. A commercially available and cheap polymeric material is cellulose acetate (CA, MW 100 000, DS = 2.45) this was also used as the precursor material for preparation of carbon membranes by He et al They reported that cellulose acetate can be easily dissolved in many solvents to form the dope solution for spinning the hollow fibers, and the hollow fiber carbon membranes prepared showed good separation performances. [Pg.165]

Typical solvents used in membrane production include N-methylpyrrolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, tetrahydrofuran, dioxane, dichloromethane, methyl acetate, ethyl acetate, and chloroform. They are used alone or in mixtures. These are used most frequently as non-solvents methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and t-butanol. Polymers involved include polysulfone, polyethersulfone, polyamide, polyimide, polyetherimide, polyolefins, polycarbonate, polyphenyleneoxide, poly(vinylidene fluoride), polyacrylonitrile, and cellulose and its derivatives. [Pg.694]

The values of t (i.e., the critical exponent for electrical conductivity versus fluence), obtained from the slope of logftr) versus log(4> - j) linear dependences for various ion-implanted polymers (polyacrylonitrile [11], polyimide [87], poly-2,6-dimethyl-polyphenyleneoxide [11], perylene derivatives [12]), are 4-5 when the energy is deposited predominantly by the collisional mechanism and 7-8 when electronic stopping prevails. These values of the critical exponent for conductivity are substantially higher than those observed for metal nanoparticles in a dielectric matrix [88], which can be apparently explained by the effects of the conducting phase ordering during the implantation. [Pg.406]


See other pages where Polyacrylonitrile polyimide is mentioned: [Pg.79]    [Pg.343]    [Pg.79]    [Pg.343]    [Pg.154]    [Pg.438]    [Pg.341]    [Pg.46]    [Pg.309]    [Pg.438]    [Pg.132]    [Pg.584]    [Pg.2852]    [Pg.54]    [Pg.220]    [Pg.1]    [Pg.1034]    [Pg.139]    [Pg.769]    [Pg.772]    [Pg.434]    [Pg.465]    [Pg.635]    [Pg.933]    [Pg.96]    [Pg.933]    [Pg.162]    [Pg.216]    [Pg.160]    [Pg.296]    [Pg.56]    [Pg.129]    [Pg.407]    [Pg.409]   
See also in sourсe #XX -- [ Pg.8 , Pg.19 , Pg.69 , Pg.101 , Pg.105 ]




SEARCH



Polyacrylonitril

Polyacrylonitrile

Polyacrylonitriles

© 2024 chempedia.info