Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly support

While the v-a plots for ionized monolayers often show no distinguishing features, it is entirely possible for such to be present and, in fact, for actual phase transitions to be observed. This was the case for films of poly(4-vinylpyri-dinium) bromide at the air-aqueous electrolyte interface [118]. In addition, electrostatic interactions play a large role in the stabilization of solid-supported lipid monolayers [119] as well as in the interactions between bilayers [120]. [Pg.556]

Salts of neodecanoic acid have been used in the preparation of supported catalysts, such as silver neodecanoate for the preparation of ethylene oxide catalysts (119), and the nickel soap in the preparation of a hydrogenation catalyst (120). Metal neodecanoates, such as magnesium, lead, calcium, and zinc, are used to improve the adherence of plasticized poly(vinyl butyral) sheet to safety glass in car windshields (121). Platinum complexes using neodecanoic acid have been studied for antitumor activity (122). Neodecanoic acid and its esters are used in cosmetics as emoUients, emulsifiers, and solubilizers (77,123,124). Zinc or copper salts of neoacids are used as preservatives for wood (125). [Pg.106]

Another type of membrane is the dynamic membrane, formed by dynamically coating a selective membrane layer on a finely porous support. Advantages for these membranes are high water flux, generation and regeneration in situ abiUty to withstand elevated temperatures and corrosive feeds, and relatively low capital and operating costs. Several membrane materials are available, but most of the work has been done with composites of hydrous zirconium oxide and poly(acryhc acid) on porous stainless steel or ceramic tubes. [Pg.382]

Fig. 11. Crimp terminal contigurations (a) straight battel, 90° tongue, where wine without insulation is crimped in the battel, (b) Open battel having insulation-piercing lances, (c) Nylon or poly(vinyl chloride) preinsulated terminal accommodating and supporting wine insulation. Wine without end insulation is insetted in the terminal and is crimped. The terminal sleeve is not broken but conforms to the shape of the crimp indent, (d) Quick disconnect... Fig. 11. Crimp terminal contigurations (a) straight battel, 90° tongue, where wine without insulation is crimped in the battel, (b) Open battel having insulation-piercing lances, (c) Nylon or poly(vinyl chloride) preinsulated terminal accommodating and supporting wine insulation. Wine without end insulation is insetted in the terminal and is crimped. The terminal sleeve is not broken but conforms to the shape of the crimp indent, (d) Quick disconnect...
Beaded methacrylate polymers, poly(hydroxyethylmethacrylate), Spheron, Separon (29), and poly(glycidylmethacrylate), Eupergin (30,31), are studied extensively at the Czechoslovak Academy of Macromolecular Sciences. An addition to this type of support is poly(oxyethylene-dimethacrylate) (32). Heitz et al. (33) described the preparation of beaded poly(methylacrylates) cross-linked with ethanedimethacrylates. [Pg.9]

A more effecdve catalyst for the Hetuy reacdon is a polymer-supported base such as amberlyst A-31. Various fi-nitro alcohols can be obtained v/ith the help of amberlyst v/ith or without solvent fEq, 3,14, A recent report claims that amberlite IRA-430 COH-formi or DOWEX-1 COH-formi is more effecdve for the Henry reacdon than amberlyst A-31/ Poly-... [Pg.35]

The mixture of deprotected amino acid derivatives in solution was then immobilized onto a polymeric solid support, typically activated 5-)xm macroporous poly(hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads, to afford the chiral stationary phases with a multiplicity of selectors. Although the use of columns... [Pg.86]

Ionic liquids have already been demonstrated to be effective membrane materials for gas separation when supported within a porous polymer support. However, supported ionic liquid membranes offer another versatile approach by which to perform two-phase catalysis. This technology combines some of the advantages of the ionic liquid as a catalyst solvent with the ruggedness of the ionic liquid-polymer gels. Transition metal complexes based on palladium or rhodium have been incorporated into gas-permeable polymer gels composed of [BMIM][PFg] and poly(vinyli-dene fluoride)-hexafluoropropylene copolymer and have been used to investigate the hydrogenation of propene [21]. [Pg.266]

Paine et al. [99] tried different stabilizers [i.e., hydroxy propylcellulose, poly(N-vinylpyrollidone), and poly(acrylic acid)] in the dispersion polymerization of styrene initiated with AIBN in the ethanol medium. The direct observation of the stained thin sections of the particles by transmission electron microscopy showed the existence of stabilizer layer in 10-20 nm thickness on the surface of the polystyrene particles. When the polystyrene latexes were dissolved in dioxane and precipitated with methanol, new latex particles with a similar surface stabilizer morphology were obtained. These results supported the grafting mechanism of stabilization during dispersion polymerization of styrene in polar solvents. [Pg.205]

The structures of these ylide polymers were determined and confirmed by IR and NMR spectra. These were the first stable sulfonium ylide polymers reported in the literature. They are very important for such industrial uses as ion-exchange resins, polymer supports, peptide synthesis, polymeric reagent, and polyelectrolytes. Also in 1977, Hass and Moreau [60] found that when poly(4-vinylpyridine) was quaternized with bromomalonamide, two polymeric quaternary salts resulted. These polyelectrolyte products were subjected to thermal decyana-tion at 7200°C to give isocyanic acid or its isomer, cyanic acid. The addition of base to the solution of polyelectro-lyte in water gave a yellow polymeric ylide. [Pg.378]

Usually used stacked, and as first layers on support Poly Grid grids for smaller packing above. Pressure drop relatively low, channeling reduced for comparative stacked packings. No side wall thrust. [Pg.255]

The drawback of the described adsorbents is the leakage of the bonded phase that may occur after the change of eluent or temperature of operation when the equilibrium of the polymer adsorption is disturbed. In order to prepare a more stable support Dulout et al. [31] introduced the treatment of porous silica with PEO, poly-lV-vinylpyrrolidone or polyvinylalcohol solution followed by a second treatment with an aqueous solution of a protein whose molecular weight was lower than that of the proteins to be separated. Possibly, displacement of the weakly adsorbed coils by the stronger interacting proteins produce an additional shrouding of the polymer-coated supports. After the weakly adsorbed portion was replaced, the stability of the mixed adsorption layer was higher. [Pg.144]

The chemical adsorption of a relatively high molecular weight neutral polymer (poly(succinimide), M = 13000) on aminopropyl-Vydac 101 TP silica gel was applied by Alpert [47, 48] to prepare a reactive composite support for use in cation-exchange [47] and hydrophobic-interaction [48] chromatography of pro-... [Pg.150]

Fig. 7a, b. Kinetics of poly(p-nitrophenyl acrylate) chemical adsorption on aminopropyl-Aerosil at 25 °C in dimethylsulphoxide. Filled circles ester group content (pmol/g support), empty c/rc/ei p-nitrophenol release (pmol/g support), a — l%solution b — 5% solution [55]... [Pg.155]

Porous glass (PG) modified with covalently adsorbed poly(p-nitrophenyl acrylate), as described in Sect. 4.1, turned out to be a highly suitable carrier for immobilization of various biospecific ligands and enzymes. When the residual active ester groups of the carrier were blocked by ethanolamine, the immobilized ligands when bound to the solid support via hydrophilic and flexible poly(2-hydroxyethyl acrylamide). The effective biospecific binding provided by the ligands... [Pg.170]

Immobilization of A and B blood group oligosaccharide haptens and preparation of immunoadsorbents with specificity to anti-A and anti-B antibodies has been carried out with the use of poly acrylate-coated PG (WPG-PA) [124]. Prespacered A and B-trisaccharide-fl-aminopropylglycosides were used for the synthesis. WPG-PA (1 g) quantitatively binds both haptens (2 pinole) whereas some other activated affinity supports (for example, CNBr-Sepharose 4B) do not. On the other hand, glycidoxypropyl-silica binds prespacered haptens completely but these materials reveal no specific adsorptivity. [Pg.171]


See other pages where Poly support is mentioned: [Pg.33]    [Pg.33]    [Pg.76]    [Pg.221]    [Pg.1142]    [Pg.378]    [Pg.549]    [Pg.150]    [Pg.155]    [Pg.25]    [Pg.526]    [Pg.252]    [Pg.42]    [Pg.291]    [Pg.451]    [Pg.344]    [Pg.479]    [Pg.189]    [Pg.161]    [Pg.558]    [Pg.174]    [Pg.204]    [Pg.439]    [Pg.188]    [Pg.74]    [Pg.225]    [Pg.285]    [Pg.14]    [Pg.56]    [Pg.505]    [Pg.515]    [Pg.151]    [Pg.165]    [Pg.166]    [Pg.382]    [Pg.72]   


SEARCH



A Comparative Study of Three Poly-DVB-supported Ru Carbenes

Amphiphilic polystyrene-poly resin-supported

Chromatographic support poly

Membrane syntheses, poly supports

Poly -based supports

Poly -supported catalysts

Poly -supported catalysts catalyst recovery

Poly film support

Poly membranes, supported

Poly styrene supports

Poly supports amination

Poly supports bromination

Poly supports characterization

Poly supports chloromethylation

Poly supports functionalization

Poly supports phosphination

Poly- -leucine, enantioselective catalyst support

Polymer Support Poly

Preparation poly supports

© 2024 chempedia.info