Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption mixed

If the mutual interaction of adsorbed particles is strong enough the surface diffusion can become organized and leads to a formation of islets of adsorbed molecules in the sense of the Volmer-Weber drop mechanism, or to a layer association, parallel to the crystalline surface, according to the Frank-van der Merve s mechanism. Alternatively, it can form a tridimensional organized region (Stranski-Krastanow s mechanism) similar to that of adsorption mixed crystals74). [Pg.106]

There are four types of coprecipitation surface adsorption, mixed-crystal formation, occlusion, and mechanical entrapment." Surface adsorption and mixed-crystal formation are equilibrium processes, whereas occlusion and mechanical entrapment arise from the kinetics of crystal growth. [Pg.321]

Numerous electrokinetic studies (see, e.g., [47]) have been carried out in the presence of pH buffers. These results are not used in the present compilation, because the components of pH buffers usually show specihc adsorption. Mixed evidence is found in the literature regarding specihc/nonspecihc character of adsorption of short-chain carboxylic acids. Reference [48] suggests an absence of a shift in the lEP of alumina (0.5 g/L) in the presence of >0.001 M organic acids. The effect of specihc adsorption on the electrokinetic curves became visible at pH < lEP. No shift in the lEP of titania in the presence of CHjCOONa or C2H5COONa was observed [49], but sodium salts of higher carboxylic acids induced a shift in the lEP to low pH. [Pg.14]

Still another manifestation of mixed-film formation is the absorption of organic vapors by films. Stearic acid monolayers strongly absorb hexane up to a limiting ratio of 1 1 [272], and data reminiscent of adsorption isotherms for gases on solids are obtained, with the surface density of the monolayer constituting an added variable. [Pg.145]

The location and shape of the entire electrocapillary curve are affected if the general nature of the medium is changed. Fawcett and co-workers (see Ref. 126) have used nonaqueous media such as methanol, V-methylformamide, and propylene carbonate. In earlier studies, electrocapillaiy curves were obtained for O.OIA/ hydrochloric acid in mixed water-ethanol media of various compositions [117, 118]. The surface adsorption of methanol, obtained from... [Pg.200]

Fig. XI-11. Relation of adsorption from binary liquid mixtures to the separate vapor pressure adsorption isotherms, system ethanol-benzene-charcoal (n) separate mixed-vapor isotherms (b) calculated and observed adsorption from liquid mixtures. (From Ref. 143.)... Fig. XI-11. Relation of adsorption from binary liquid mixtures to the separate vapor pressure adsorption isotherms, system ethanol-benzene-charcoal (n) separate mixed-vapor isotherms (b) calculated and observed adsorption from liquid mixtures. (From Ref. 143.)...
The separate adsorption isotherms for gases A and B on a certain solid obey the Langmuir equation, and it may be assumed that the mixed or competitive adsorption obeys the corresponding form of the equation. [Pg.672]

When a molecule adsorbs to a surface, it can remain intact or it may dissociate. Dissociative chemisorption is conmion for many types of molecules, particularly if all of the electrons in the molecule are tied up so that there are no electrons available for bonding to the surface without dissociation. Often, a molecule will dissociate upon adsorption, and then recombine and desorb intact when the sample is heated. In this case, dissociative chemisorption can be detected with TPD by employing isotopically labelled molecules. If mixing occurs during the adsorption/desorption sequence, it indicates that the mitial adsorption was dissociative. [Pg.295]

Sagiv J 1980 Organized monolayers by adsorption. 1. Formation and struoture of oleophobio mixed monolayers on solid surfaoes J. Am. Chem. Soc. 102 92-8... [Pg.2635]

Adsorption Processes. Adsorption represents the second and newer method for separating and producing high purity PX. In this process, adsorbents such as molecular sieves are used to produce high purity PX by preferentially removing PX from mixed xylene streams. Separation is accomphshed by exploiting the differences in affinity of the adsorbent for PX, relative to the other Cg isomers. The adsorbed PX is subsequendy removed... [Pg.419]

Eor a linear system f (c) = if, so the wave velocity becomes independent of concentration and, in the absence of dispersive effects such as mass transfer resistance or axial mixing, a concentration perturbation propagates without changing its shape. The propagation velocity is inversely dependent on the adsorption equiUbrium constant. [Pg.261]

Adsorption Chromatography. The principle of gas-sohd or Hquid-sohd chromatography may be easily understood from equation 35. In a linear multicomponent system (several sorbates at low concentration in an inert carrier) the wave velocity for each component depends on its adsorption equihbrium constant. Thus, if a pulse of the mixed sorbate is injected at the column inlet, the different species separate into bands which travel through the column at their characteristic velocities, and at the oudet of the column a sequence of peaks corresponding to the different species is detected. [Pg.264]

Eijuillbrium. Among the aspects of adsorption, equiUbtium is the most studied and pubUshed. Many different adsorption equiUbtium equations are used for the gas phase the more important have been presented (see section on Isotherm Models). Equally important is the adsorbed phase mixing rule that is used with these other models to predict multicomponent behavior. [Pg.285]

Ethylbenzene Separation. Ethylbenzene [100-41-4] which is primarily used in the production of styrene, is difficult to separate from mixed Cg aromatics by fractionation. A column of about 350 trays operated at a refluxTeed ratio of 20 is required. No commercial adsorptive unit to accomplish this separation has yet been installed, but the operation has been performed successhiUy in pilot plants (see Table 5). About 99% of the ethylbenzene in the feed was recovered at a purity of 99.7%. This operation, the UOP Ebex process, requires about 40% of the energy that is required by fractional distillation. [Pg.300]

Benzene, toluene, and a mixed xylene stream are subsequently recovered by extractive distillation using a solvent. Recovery ofA-xylene from a mixed xylene stream requires a further process step of either crystallization and filtration or adsorption on molecular sieves. o-Xylene can be recovered from the raffinate by fractionation. In A" xylene production it is common to isomerize the / -xylene in order to maximize the production of A xylene and o-xylene. Additional benzene is commonly produced by the hydrodealkylation of toluene to benzene to balance supply and demand. Less common is the hydrodealkylation of xylenes to produce benzene and the disproportionation of toluene to produce xylenes and benzene. [Pg.175]

Dilution. In many appHcations, dilution of the flocculant solution before it is mixed with the substrate stream can improve performance (12). The mechanism probably involves getting a more uniform distribution of the polymer molecules. Since the dosage needed to form floes is usually well below the adsorption maximum, a high local concentration is effectively removed from the system at that point, leaving no flocculant for the rest of the particles. A portion of the clarified overflow can be used for dilution so no extra water is added to the process. [Pg.36]

Separation of Norma/ and Isoparaffins. The recovery of normal paraffins from mixed refinery streams was one of the first commercial appHcations of molecular sieves. Using Type 5A molecular sieve, the / -paraffins can be adsorbed and the branched and cycHc hydrocarbons rejected. During the adsorption step, the effluent contains isoparaffins. During the desorption step, the / -paraffins are recovered. Isothermal operation is typical. [Pg.457]

The mixed monocyclic aromatics are called BTX as an abbreviation for ben2ene, toluene, and xylene (see Btxprocessing). The benzene and toluene are isolated by distillation, and the isomers of the xylene are separated by superfractionation, fractional crystallisation, or adsorption (see Xylenes and ethylbenzene). Bensene is the starting material for styrene (qv), phenol (qv), and a number of fibers and plastics. Toluene (qv) is used to make a number of... [Pg.215]

The adsorbed layer at G—L or S—L surfaces ia practical surfactant systems may have a complex composition. The adsorbed molecules or ions may be close-packed forming almost a condensed film with solvent molecules virtually excluded from the surface, or widely spaced and behave somewhat like a two-dimensional gas. The adsorbed film may be multilayer rather than monolayer. Counterions are sometimes present with the surfactant ia the adsorbed layer. Mixed moaolayers are known that iavolve molecular complexes, eg, oae-to-oae complexes of fatty alcohol sulfates with fatty alcohols (10), as well as complexes betweea fatty acids and fatty acid soaps (11). Competitive or preferential adsorption between multiple solutes at G—L and L—L iaterfaces is an important effect ia foaming, foam stabiLizatioa, and defoaming (see Defoamers). [Pg.236]

Design criteria for carbon adsorption include type and concentration of contaminant, hydrauhc loading, bed depth, and contact time. Typical ranges are 1.4—6.8 L/s/m for hydrauhc loading, 1.5—9.1 m for bed depth, and 10—50 minutes for contact time (1). The adsorption capacity for a particular compound or mixed waste stream can be deterrnined as an adsorption isotherm and pilot tested. The adsorption isotherm relates the observed effluent concentration to the amount of material adsorbed per mass of carbon. [Pg.161]

Design data are available for the specific organics on the EPA s priority pollutant Hst. For mixed wastewaters, a laboratory study is necessary to determine adsorption characteristics. Wastewater is contacted with a range of concentrations of powdered carbon and adsorption occurs, as graphed ia the form of a Freundhch Isotherm, shown ia Figure 19. [Pg.192]


See other pages where Adsorption mixed is mentioned: [Pg.95]    [Pg.364]    [Pg.262]    [Pg.869]    [Pg.107]    [Pg.95]    [Pg.364]    [Pg.262]    [Pg.869]    [Pg.107]    [Pg.143]    [Pg.202]    [Pg.723]    [Pg.1758]    [Pg.159]    [Pg.414]    [Pg.417]    [Pg.388]    [Pg.171]    [Pg.17]    [Pg.545]    [Pg.11]    [Pg.500]    [Pg.381]    [Pg.184]    [Pg.477]    [Pg.76]    [Pg.501]    [Pg.510]    [Pg.454]    [Pg.150]    [Pg.236]    [Pg.538]    [Pg.172]   
See also in sourсe #XX -- [ Pg.106 , Pg.110 ]




SEARCH



© 2024 chempedia.info