Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terminal unsaturation

This mode of termination produces a negligible effect on the molecular weight of the reacting species, but it does produce a terminal unsaturation in one of the dead polymer molecules. Each polymer molecule contains one initiator fragment when termination occurs by disproportionation. [Pg.359]

Polyisobutylene has a similar chemical backbone to butyl rubber, but does not contain double carbon-carbon bonds (only terminal unsaturation). Many of its characteristics are similar to butyl rubber (ageing and chemical resistance, low water absorption, low permeability). The polymers of the isobutylene family have very little tendency to crystallize. Their strength is reached by cross-linking instead of crystallization. The amorphous structure of these polymers is responsible for their flexibility, permanent tack and resistance to shock. Because the glass transition temperature is low (about —60°C), flexibility is maintained even at temperatures well below ambient temperature. [Pg.584]

Terminally unsaturated fluonnated alkenoic acids can be obtained from poly-fluorocycloalkenes by reaction with potassium hydroxide m rert-butyl alcohol [24] (equation 26) The use of a tertiary alcohol is critical because primary and secondar y alcohols lead to ethers of the cycloalkenes The use of a polar aprotic solvent such as diglyme generates enols of diketones [26] (equation 27) The compound where... [Pg.429]

Anhydrous ammonia adds tofluorooleftns to produce nitriles Tins phenomenon IS used to characterize chemically the terminal difluoromethylene olefin that IS claimed to be m equilibrium with the internal isomer [4] (equation 2) Thus isomerization to the terminally unsaturated isomer prior to attack by ammonia yields the cyanoenamine... [Pg.742]

The addition of primary amines to fluoroolefins under anhydrous conditions yields imines The hexafluoropropene dimer, perfluoro-2-methyl-2-pcntcne, and ten butylamine react to yield a mixture of two compounds m a 9 4 ratio [4] (equation 3) rather than just the major keteiiimme-imine, as previously reported [5] It IS claimed that this result is possible by means of isomerization to the terminally unsaturated difluoromethylene isomer prior to nucleophilic attack Secondary amines add to fluoroolefins under anhydrous conditions to give fluonnated ternary amines m good yields If the fluoroolefin is added to the amine without cooling the reaction mixture, or if an excess of the secondary armne is used, there is a tendency toward dehvdrofluonnation of the ternary amine The products... [Pg.742]

These unsaturated alcohols act as monofunctional initiators, giving rise to terminally unsaturated PO-EO diblock impurities, which may be quantified by determining the degree of unsaturation in the final product. [Pg.766]

O-isopropylidene derivative (57) must exist in pyridine solution in a conformation which favors anhydro-ring formation rather than elimination. Considerable degradation occurred when the 5-iodo derivative (63) was treated with silver fluoride in pyridine (36). The products, which were isolated in small yield, were identified as thymine and l-[2-(5-methylfuryl)]-thymine (65). This same compound (65) was formed in high yield when the 5 -mesylate 64 was treated with potassium tert-hx Xy -ate in dimethyl sulfoxide (16). The formation of 65 from 63 or 64 clearly involves the rearrangement of an intermediate 2, 4 -diene. In a different approach to the problem of introducing terminal unsaturation into pento-furanoid nucleosides, Robins and co-workers (32,37) have employed mild base catalyzed E2 elimination reactions. Thus, treatment of the 5 -tosylate (59) with potassium tert-butylate in tert-butyl alcohol afforded a high yield of the 4 -ene (60) (37). This reaction may proceed via the 2,5 ... [Pg.141]

In termination, unsaturated and saturated ends are formed when the propagating species undergo disproportionation, head-to-head linkages when they combine, and other functional groups may be introduced by reactions with inhibitors or transfer agents (Scheme 1.2). In-chain defect structures (within the polymer molecule) can also arise by copolymerization of the unsaturated byproducts of initiation or termination. [Pg.4]

Two-dimensional thin-layer chromatography. This method is used to verify the presence of terminal 5-sultones, terminal unsaturated y-sultone, and terminal 2-chloro-y-sultone, if they are detected in the gas chromatographic determination. After extraction of the neutral oil from the AOS sample, the neutral oil is made up volumetrically to at least a 10% solution in hexane. Of this solution 3 pi is spotted onto a silica gel TLC plate together with standard sultones. It is twice developed with 2-propyl ether and then after turning the plate 90° twice developed with 60/40 n-butyl chloride/methylene chloride. The... [Pg.450]

As is the case for cationic polymerisation, anionic polymerisation can terminate by only one mechanism, that is by proton transfer to give a terminally unsaturated polymer. However, proton transfer to initiator is rare - in the example just quoted, it would involve the formation of the unstable species NaH containing hydride ions. Instead proton transfer has to occur to some kind of impurity which is capable for forming a more stable product. This leads to the interesting situation that where that monomer has been rigorously purified, termination cannot occur. Instead reaction continues until all of the monomer has been consumed but leaves the anionic centre intact. Addition of extra monomer causes further polymerisation to take place. The potentially reactive materials that result from anionic initiation are known as living polymers. [Pg.34]

Another chain radical may acquire the terminal unit of molecule XV in one of its propagation steps i.e., the terminal unsaturated unit may be incorporated as one of the units combined in another growing chain. When this occurs a branched polymer molecule XVI is produced. ... [Pg.257]

Warwel, S., Sojka, M., and Rusch, M. Synthesis of Dicarboxylic Acids by Transition-Metal Catalyzed Oxidative Cleavage of Terminal-Unsaturated Fatty Acids. 164, 79-98 (1993). Wexle.r, D., Zink, J. I., and Reber, C. Spectroscopic Manifestations of Potential Surface Coupling Along Normal Coordinates in Transition Metal Complexes. 171,173-204 (1994). Willett, P., see Artymiuk, P. J. 174, 73-104 (1995). [Pg.299]

Warwel, S., Sojka, M., and Rusch, M. Synthesis of Dicarboxylic Acids by Transition-Metal Catalyzed Oxidative Cleavage of Terminal-Unsaturated Fatty Acids. 164, 79-98 (1993). [Pg.163]

Unsaturations of hydroxy-containing compounds are reduced on reaction with nitrile oxides such as tetramethyl terephthalonitrile N,N -dioxide (506) or 1,3,5-triethylbenzene-2,6-dicarbonitrile oxide (507). The reaction of a nitrile oxide with terminal unsaturation, associated with the preparation of a poly-ol from propylene oxide, reduces the mono-ol content of the poly-ol composition. Thus, stirring a solution of an ethylene oxide-propylene oxide copolymer with an OH content of 2.39% and vinyl unsaturation of 3.58% in THF with l,3,5-triethylbenzene-2,6-dicarbonitrile oxide for 1 min results in an effective removal of the terminal unsaturation. [Pg.103]

Lysenko Z, Wessling RA. Polyols having reduced terminal unsaturation using dinitrile oxide reactant and their manufacture, US Patent No. 5736748 1998 (diem. Abstr. 1998 128 283177],... [Pg.126]

Besides piperidine alkaloids, a total of 19 pyrrolidines have been found in the secretions of thief ants and fire ants of the genera Solenopsis and Monomorium. Among these, compounds 80-84 are simple pyrrolidines with two saturated linear all-carbon side chains only in Solenopsis latinode is there a secondary amine (82) and its methylated analog (85). One or two terminal unsaturations are present in compounds 86-91, which all possess a (hex-l-en)-6-yl chain and a 5-, 7-, or 9-carbon saturated chain. Compounds 93, 94, 96, 97, and 98 are the A-l-pyrrolines corresponding to pyrrolidines 80, 82, 90 (93 and 96 corresponding to 80, 94 to 82, and 97 and 98 to 90). [Pg.300]

Check experiments with pre-formed terminally-unsaturated polyisobutenes of low and high DP, and with saturated hydrocarbons, gave results supporting our conclusions that the AlX+2 reacts only with double bonds to give Al-C bonds. Thus the supposition 2 is now supported at least qualitatively by direct experimental results, but the exact quantitative correlations remain to be established. A Short Communication on this subject will be submitted shortly to Makromolecular Chemistry. [Pg.279]

Table 8.17 shows the scope of the reaction of acetylcobalt tetracarbonyl with polyenes. The reactions are regiospecific with the acetyl group adding to the terminal unsaturated carbon atom of the ir-electron system to produce the E-a,p-unsaturated ketones [9]. In the reaction with fulvenes [10], only the 1-acetyl and 1,4-diacetyl derivatives are formed, with no evidence of the 2-isomer. This is an indication of the relative stabilities of the cyclic it-allyl complexes, compared with the exocyclic complex. It has been postulated that, in the reactions of conjugated systems, the initial o-allyl adduct proceeds to the products via the it-allyl complex (cf Scheme 8.1), whereas in the case of unconjugated tt-systems, the initial o-adduct is more stable and tends to undergo a further carbonylation reaction. [Pg.388]

DNA-(apurinic or apyrimidinic site) lyase [EC 4.2.99.18, formerly EC 3.1.25.2] acts on the C-Q-P bond 3 to the apurinic or apyrimidinic site in DNA. This bond is broken by a /3-elimination reaction, leaving a 3 -terminal unsaturated sugar and a product with a terminal 5 -phosphate. Note that this nicking of the phosphodiester bond is a lyase-type reaction, not hydrolysis. [Pg.191]

The nature of the dormant state was determined by H NMR end-group analysis. Two types of terminal unsaturations were found, vinylidene end groups indicative of (3-H elimination from 1,2-inserted polymeryl chains, and cis-butenyl end groups, arising from 2,1-misinsertions (Scheme 8.33) the latter were dominant (66%). [Pg.338]

Transfer of a P-proton from the propagating carbocation is the most important chain-breaking reaction. It occurs readily because much of the positive charge of the cationic propagating center resides not on carbon, but on the P-hydrogens because of hyperconjugation. Monomer, counterion or any other basic species in the reaction mixture can abstract a P-proton. Chain transfer to monomer involves transfer of a P-proton to monomer with the formation of terminal unsaturation in the polymer. [Pg.384]

Low-molecular weight stars were prepared to facilitate the interpretation of NMR spectra. Figure 3 shows the NMR spectrum of a virgin sample indicating resonances at 6=1.95 and 6=1.65 ppm, characteristic of protons of the terminal -CH2-C(CH3)2-C1 group [65]. The absence of resonances at 6 4.6 and 6-4.8 ppm, characteristic of terminal unsaturation, also suggests that the arms carry tert-Cl end groups. [Pg.14]


See other pages where Terminal unsaturation is mentioned: [Pg.515]    [Pg.169]    [Pg.47]    [Pg.450]    [Pg.895]    [Pg.486]    [Pg.291]    [Pg.348]    [Pg.173]    [Pg.210]    [Pg.214]    [Pg.383]    [Pg.665]    [Pg.85]    [Pg.180]    [Pg.316]    [Pg.118]    [Pg.201]    [Pg.228]    [Pg.240]    [Pg.270]    [Pg.106]   
See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.227 , Pg.246 ]




SEARCH



The Double Functional Group Transformation Terminally Unsaturated

Unsaturated Carbonyl Systems with a Terminal Vinylic CF2 Group

Unsaturated terminal epoxide

© 2024 chempedia.info