Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly production volume

Polystyrene. Polystyrene (PS) film and sheet has the third largest production volume, behind only the polyethylenes and poly(vinyl chloride). [Pg.378]

Propanediol (1,3PD) is also undergoing a transition from a small-volume specialty chemical into a commodity. The driving force is its application in poly (trimethylene terephthalate) (PTT), which is expected to partially replace polyethylene terephthalate) and polyamide because of its better performance, such as stretch recovery. The projected market volume of PTT under the trade-names CORTERRA (Shell) and Sorona 3GT (Dupont) is 1 Mt a-1 within a few years. In consequence, the production volume of 1,3PD is expected to expand from 55kta-1 in 1999 to 360 kt a-1 in the near future. 1,3PD used to be synthesized from acrolein by Degussa and from ethylene oxide by Shell (see Fig. 8.8) but a fermentative process is now joining the competition. [Pg.342]

Emulsion polymerization is the basis of many industrial processes, and the production volume of latex technologies is continually expanding—a consequence of the many environmental, economic, health, and safety benefits the process has over solvent-based processes. A wide range of products are synthesized by emulsion polymerization, including commodity polymers, such as polystyrene, poly(acrylates), poly (methyl methacrylate), neoprene or poly(chloroprene), poly(tetrafluoroethylene), and styrene-butadiene rubber (SBR). The applications include manufacture of coatings, paints, adhesives, synthetic leather, paper coatings, wet suits, natural rubber substitutes, supports for latex-based antibody diagnostic kits, etc. ... [Pg.863]

The U.S. production volume of the aromatic polyester, poly(ethylene terephtha-late) (PET), is comparable to that of low-density polyethylene or polystyrene. The... [Pg.103]

The remaining few percent of the BPA global production volume are divided between high performance polymers mentioned above and components of various polymeric blends [79,80] (approximately 2%), and polymer additives, mainly flame retardant [81] (approximately 2%). Small amounts of BPA are also used for formulation of antioxidant additives for soft poly(vinyl chloride) and as a component of colour developing agent in carbonless and thermal paper coatings [82]. Thus, for many years halogenated BPA (mainly tetrabromobisphenol-A [83]) (Fig. 7.19) is applied as an effective and commonly used flame retardants for different polymers [84,85,86]. [Pg.258]

By far the largest volume synthetic alcohol is 2-ethylexanol [104-76-7] CgH gO, used mainly in production of the poly(vinyl chloride) plasticizer bis(2-ethylhexyl) phthalate [117-81-7], commonly called dioctyl phthalate [117-81-7] or DOP (see Plasticizers). A number of other plasticizer... [Pg.454]

Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States. Table 6 shows the sales estimates for principal film and sheet products for the year 1990 (14). Low density polyethylene films dominate the market in volume, followed by polystyrene and the vinyls. High density polyethylene, poly(ethylene terephthalate), and polypropylene are close in market share and complete the primary products. A number of specialty resins are used to produce 25,000—100,000 t of film or sheet, and then there are a large number of high priced, high performance materials that serve niche markets. The original clear film product, ceUophane, has faUen to about 25,000 t in the United States, with only one domestic producer. Table 7 Hsts some of the principal film and sheet material manufacturers in the United States.
Although synthetic lubrication oil production amounts to only about 2% of the total market, volume has been increasing rapidly (67). Growth rates of the order of 20% per year for poly( a-olefin)s, 10% for polybutenes, and 8% for esters (28) reflect increasing automotive use and these increases would accelerate if synthetics were adopted for factory fill of engines by automotive manufacturers. The estimated production of poly( a-olefin)s for lubricants appears to be approximately 100,000 m /yr, esters 75,000, poly(alkylene glycol)s 42,000, polybutenes 38,000, phosphates 20,000, and dialkyl benzene 18,000 (28,67). The higher costs reflected in Table 18 (18,28) have restricted the volume of siUcones, chlorotrifluoroethylene, perfluoroalkylpolyethers, and polyphenyl ethers. [Pg.255]

Nearly all uses and appHcations of benzyl chloride are related to reactions of the active haUde substituent. More than two-thirds of benzyl chloride produced is used in the manufacture of benzyl butyl-phthalate, a plasticizer used extensively in vinyl flooring and other flexible poly(vinyl chloride) uses such as food packaging. Other significant uses are the manufacture of benzyl alcohol [100-51-6] and of benzyl chloride-derived quaternary ammonium compounds, each of which consumes more than 10% of the benzyl chloride produced. Smaller volume uses include the manufacture of benzyl cyanide [140-29-4], benzyl esters such as benzyl acetate [140-11-4], butyrate, cinnamate, and saUcylate, benzylamine [100-46-9], and benzyl dimethyl amine [103-83-8], and -benzylphenol [101-53-1]. In the dye industry benzyl chloride is used as an intermediate in the manufacture of triphenylmethane dyes (qv). First generation derivatives of benzyl chloride are processed further to pharmaceutical, perfume, and flavor products. [Pg.61]

Many random copolymers have found commercial use as elastomers and plastics. For example, SBR (62), poly(butadiene- (9-styrene) [9003-55-8] has become the largest volume synthetic mbber. It can be prepared ia emulsion by use of free-radical initiators, such as K2S20g or Fe /ROOH (eq. 18), or in solution by use of alkyl lithium initiators. Emulsion SBR copolymers are produced under trade names by such companies as American Synthetic Rubber (ASPC), Armtek, B. F. Goodrich (Ameripool), and Goodyear (PHoflex) solution SBR is manufactured by Firestone (Stereon). The total U.S. production of SBR in 1990 was 581,000 t (63). [Pg.184]

A large volume usage of S—B—S-based compounds is ia footwear. Canvas footwear, such as sneakers and unit soles, can be made by injection mol ding. Frictional properties resemble those of conventionally vulcanised mbbers and are superior to those of the flexible thermoplastics, such as plasticized poly(vinyl chloride). The products remain flexible under cold conditions because of the good low temperature properties of the polybutadiene segment. [Pg.18]

Most polyesters (qv) are based on phthalates. They are referred to as aromatic-aHphatic or aromatic according to the copolymerized diol. Thus poly(ethylene terephthalate) [25038-59-9] (PET), poly(butyelene terephthalate) [24968-12-5] (PBT), and related polymers are termed aromatic-aHphatic polyester resins, whereas poly(bisphenol A phthalate)s are called aromatic polyester resins or polyarylates PET and PBT resins are the largest volume aromatic-aHphatic products. Other aromatic-aHphatic polyesters (65) include Eastman Kodak s Kodar resin, which is a PET resin modified with isophthalate and dimethylolcyclohexane. Polyarylate resins are lower volume specialty resins for high temperature (HDT) end uses (see HeaT-RESISTANT POLYAffiRS). [Pg.267]

Poly condensations of trimethylsilyl 3,5-diacetoxybenzoate Trimethylsilyl 3,5-diacetoxybenzoate (15.52 g, 50 mmol) is weighed into a cylindrical reactor equipped with a glass stirrer and gas inlet and outlet tubes. The reaction vessel is placed into a metal bath preheated to 200°C. The temperature is raised in 20°C steps over a period of 1 h and finally maintained at 280°C for 3 h. Vacuum is then applied for an additional 0.5 h. Finally, the cold reaction product is powdered, dissolved in CH2Cl2-trifluoroacetic acid (volume ratio 4 1), and precipitated into cold methanol. [Pg.118]

Various techniques have been used for the determination of oligomers, including GC [135], HPLC [136-138], TLC for polystyrene and poly a-methyl-styrene [139] and SEC for polyesters [140,141]. GC and PyGC-MS can also profitably be used for the analysis of the compositions of volatile products formed using different flame retardants (FRs). Takeda [142] reported that volumes and compositions of the volatile products and morphology of the char were affected by FRs, polymers (PC, PPE, PBT) and their reactions from 300... [Pg.196]

Using this two-stage method and acetic acid as substrate, with culture volumes of 4 1 and 12.8 1, respectively, 857 ml of culture broth was harvested per hour containing a biomass concentration of 39 g l1 with a poly(3HB) content of 62%. The resulting productivity was 1.23 g 1 1 h 1 (Table 5). [Pg.152]

Equimolar quantities of 2,4-diamino-l,5-benzenediol dihydrochloride and isophthalic acid were mixed in fresh poly (phosphoric acid) using a high-shear stirrer under a slow stream of nitrogen gas. The system was heated at 40°C for 6 hours, at CG°C for 18 hours, at 120°C for 6 hours, at 160°C for 8 hours, and at 220°C for 24 hours. The resultant mixture was dark brown. The polymer was precipitated from water. After filtration and washing with water and methanol, the solid product was then dissolved in methane-sulfonic acid, filtered and precipitated by the addition of methanol. The solid was washed with concentrated ammonium hydroxide, water, methanol, methanol/benzene mixtures (with a volume ratio of 1/1), and finally benzene. The final product was dark brown. [Pg.268]


See other pages where Poly production volume is mentioned: [Pg.81]    [Pg.154]    [Pg.82]    [Pg.1800]    [Pg.253]    [Pg.350]    [Pg.13]    [Pg.221]    [Pg.493]    [Pg.143]    [Pg.443]    [Pg.373]    [Pg.377]    [Pg.515]    [Pg.248]    [Pg.492]    [Pg.477]    [Pg.82]    [Pg.413]    [Pg.475]    [Pg.15]    [Pg.151]    [Pg.262]    [Pg.321]    [Pg.386]    [Pg.11]    [Pg.11]    [Pg.13]    [Pg.122]    [Pg.46]    [Pg.2]    [Pg.506]    [Pg.375]    [Pg.36]    [Pg.38]   
See also in sourсe #XX -- [ Pg.71 , Pg.72 ]




SEARCH



Poly , production

Poly products

Product volume

Production volume

© 2024 chempedia.info