Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly films polyelectrolyte

We have also shown that poly(phenylenevinylene) polyelectrolyte precursor polymers can be processed into fibers by a novel ion exchange precipitation. Ion exchange of these polymers can also be achieved in a phase transfer process on cast films. Finally we have shown that a new concept of incipient doping of PPV-type polymers can be realized when the ion exchanged precursor polymers containing the anions PF6 , AsF6", or T, are heated in a closed vessel to the temperatures required for dimethyl suMde elimination. [Pg.105]

Poly(arylene vinylenes). The use of the soluble precursor route has been successful in the case of poly(arylene vinylenes), both those containing ben2enoid and heteroaromatic species as the aryl groups. The simplest member of this family is poly(p-phenylene vinylene) [26009-24-5] (PPV). High molecular weight PPV is prepared via a soluble precursor route (99—105). The method involves the synthesis of the bis-sulfonium salt from /)-dichloromethylbenzene, followed by a sodium hydroxide elimination polymerization reaction at 0°C to produce an aqueous solution of a polyelectrolyte precursor polymer (11). This polyelectrolyte is then processed into films, foams, and fibers, and converted to PPV thermally (eq. 8). [Pg.38]

Because of the aqueous solubiUty of polyelectrolyte precursor polymers, another method of polymer blend formation is possible. The precursor polymer is co-dissolved with a water-soluble matrix polymer, and films of the blend are cast. With heating, the fully conjugated conducting polymer is generated to form the composite film. This technique has been used for poly(arylene vinylenes) with a variety of water-soluble matrix polymers, including polyacrjiamide, poly(ethylene oxide), polyvinylpyrroHdinone, methylceUulose, and hydroxypropylceUulose (139—141). These blends generally exhibit phase-separated morphologies. [Pg.39]

Conducting polymer composites have also been formed by co-electrodeposition of matrix polymer during electrochemical polymerization. Because both components of the composite are deposited simultaneously, a homogenous film is obtained. This technique has been utilized for both neutral thermoplastics such as poly(vinyl chloride) (159), as well as for a large variety of polyelectrolytes (64—68, 159—165). When the matrix polymer is a polyelectrolyte, it serves as the dopant species for the conducting polymer, so there is an intimate mixing of the polymer chains and the system can be appropriately termed a molecular composite. [Pg.39]

SG sols were synthesized by hydrolysis of tetraethyloxysilane in the presence of polyelectrolyte and surfactant. Poly (vinylsulfonic acid) (PVSA) or poly (styrenesulfonic acid) (PSSA) were used as cation exchangers, Tween-20 or Triton X-100 were used as non- ionic surfactants. Obtained sol was dropped onto the surface of glass slide and dried over night. Template extraction from the composite film was performed in water- ethanol medium. The ion-exchange properties of the films were studied spectrophotometrically using adsorption of cationic dye Rhodamine 6G or Fe(Phen) and potentiometrically by sorption of protons. [Pg.317]

Synthesis of poly(p-phenylene vinylene) films by thermal elimination on a soluble polyelectrolyte. [Pg.445]

So, the PVA/poly(sodium styrene sulphonate) [PSSNa] blend was obtained by casting aqueous solution of polymers mixture (PVA with Mw= 124,000-186,000 and HD=99% and PSSNa with Mw= 70,000). The resulted films were crosslinked with 1,2-dibromethane in gaseous phase. A semi-interpenetrating network (SIPN) in which polyelectrolyte (PSSNa) chains are trapped inside a based PVA network was obtained [44], A totally miscible blend with a very good film clarity and high mechanical resistance [44] resulted. [Pg.144]

In both cases the top layer of these layered polyelectrolyte films contains many ion sites that can bind redox ions by ion exchange vdth the electrolyte solution. Homo polypeptides such as poly(L-lysine) and poly(L-glutamic add) have been employed to form layered polyelectrolyte films with Fe(CN)6 " electrostatically adsorbed onto ammonium sites in poly(lysine) [45]. Modified electrodes with polyelectrolytes mono-layers have also been deposited using the Langmuir-Blodgett technique [46-48]. [Pg.61]

The inner structure of polyelectrolyte multilayer films has been studied by neutron and X-ray reflectivity experiments by intercalating deuterated PSS into a nondeut-erated PSS/PAH assembly [94, 99]. An important lesson from these experiments is that polyelectrolytes in PEMs do not present well-defined layers but are rather interpenetrated or fussy systems. As a consequence, polyelectrolyte chains deposited in an adsorption step are intertwined with those deposited in the three or four previous adsorption cycles. When polyelectrolyte mobility is increased by immersion in NaCl 0.8 M, the interpenetration increases with time as the system evolves towards a fully mixed state in order to maximize its entropy ]100]. From the point of view of redox PEMs, polyelectrolyte interpenetration is advantageous in the sense that two layers of a redox polyelectrolyte can be in electrochemical contact even if they are separated by one or more layers of an electroinactive poly ion. For example, electrical connectivity between a layer of a redox polymer and the electrode is maintained even when separated by up to 2.5 insulating bUayers [67, 101-103]. [Pg.66]

During continuous redox cycling, the first cycle usually differs from the following ones. This effect is referred as break-in. In poly(vinylferrocene), PVF, films this has been related to the incorporation of solvent and ions into the film, decreasing its resistivity [132]. This effect has been observed for several polyelectrolyte and polymer-modified electrodes, for example, polyaniline [155]. [Pg.88]

The hyperbranched poly( acrylic acid) graft films -C02H-rich interface on polyethylene can be modified by noncovalent methods just like CO2H-rich interfaces of PAA/Au grafts. This was shown by treating deprotonated 3-PAA/PE films with cationic polyelectrolytes like poly-D-lysine, and amine terminated PAMAM dendrimers at pH 7 [31]. Equation 10 illustrates the entrapment of PAMAM dendrimers in a 3-poly(sodium acrylate)/PE film. In these cases, polyvalent entrapment of the cationic electrolyte was evidenced in the ATR-IR spectriun by the appearance of amide C = O and N - H peaks of the guest dendrimer that were not present in the host 3-poly(sodium acrylate)/PE film. [Pg.22]

By contrast, membranes U-1, A-2 and X-2 are all chlorine sensitive, each responding in a unique manner. U-1 is a thin film composite membrane, the active layer consisting of cross-linked poly(ether/urea) polymer. A-2 is a homogeneous aromatic polyamide containing certain polyelectrolyte groups. X-2 is a thin film composite membrane of proprietary composition. [Pg.176]

The technique of alternating polyelectrolyte film construction has also been adapted to incorporate semiconductors into layered films. For example, multilayer films have been constructed by alternately dipping a quartz substrate into a solution of poly(diallylmethylammonium chloride) and then a solution of a stabilized CdS or PbS colloid (41). The layer-by-layer self-assembly of alternating polymer and metal sulfide is at least partially driven by the electrostatic attraction of the cationic polymer and the negative charge of the stabilized MC colloid particles. [Pg.242]

Fig. i Matrix isolation method of surface immobilization of probe oligonucleotide/poly-electrolyte mixed film for enhanced selectivity. Phase 1 Photolabile dimethoxybenzoin (DMB) protecting groups are selectively exposed to electromagnetic radiation of appropriate wavelength to provide reactive sites in which polyelectrolyte spacers can be immobilized. Phase 2 The remaining DMB-protected sites are photo-deprotected to expose sites for probe oligonucleotide immobilization onto the solid surface... [Pg.233]

Similarly, Chien et al. used a poly(acrylic acid)/poly(acrylamide) (PAA/PAM) multilayer system in which PAA was replaced by PAA conjugated with photoreactive 4-azidoaniline (AZ) after several bilayers [110]. As a result, the polyelectrolyte multilayer could be covalently crosslinked by UV irradiation through a mask. For an enhanced cell repellence, poly(allylamine) was conjugated with polyethylene glycol methyl ether) and incorporated into the top layers of the film. [Pg.53]

Collagen, poly-L-lysine/serum proteins from cell culture medium Crosslinked polyacrylic acid/polyacrylamide multilayer films, PEG Coculture of rat adrenal medulla cells and mouse fibroblasts L929 Photopatteming of polyelectrolyte multilayer film 2009 [110]... [Pg.64]

Neural stem cells are known for their sensitivity to the environment. Jan and Kotov reported the differentiation of mouse embryonic neural stem cells on SWNT-polyelectrolyte multilayer thin films [poly(ethylene imine) PEI/SWNT, six layers], which were assembled layer by layer.111 The cells were successfully differentiated to neurons, astrocytes, and oligodendrocytes with a clear formation of neurites. Compared to the widely used poly(L-ornithine) (PLO) substrates, the six-layer PEI/ SWNT thin films exhibited similar properties in terms of biocompatibihty, neurites outgrowth, and the expression of neural markers.111... [Pg.221]


See other pages where Poly films polyelectrolyte is mentioned: [Pg.392]    [Pg.112]    [Pg.193]    [Pg.145]    [Pg.10]    [Pg.444]    [Pg.198]    [Pg.563]    [Pg.161]    [Pg.221]    [Pg.66]    [Pg.67]    [Pg.176]    [Pg.128]    [Pg.446]    [Pg.146]    [Pg.28]    [Pg.28]    [Pg.29]    [Pg.487]    [Pg.39]    [Pg.270]    [Pg.136]    [Pg.139]    [Pg.142]    [Pg.142]    [Pg.411]    [Pg.642]    [Pg.134]   
See also in sourсe #XX -- [ Pg.445 ]




SEARCH



Poly films

Polyelectrolyte films

© 2024 chempedia.info