Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum methanol

K. Machido and M. Enyo, Tungsten bronze electrodes doped with platinum (methanol oxidation), J. Electrochem. Soc. 135 1955 (1988). [Pg.338]

Since on pure platinum, methanol oxidation is strongly inhibited by poison formation, bimetallic catalysts such as PtRu or PtSn, which partially overcome this problem, have received renewed attention as interesting electrocatalysts for low-temperature fuel cell applications, and consequently much research into the structure, composition, and mechanism of their catalytic activity is now being undertaken at both a fundamental and applied level [62,77]. Presently, binary PtRu catalysts for methanol oxidation are researched in diverse forms PtRu alloys [55,63,95], Ru electrodeposits on Pt [96,97], PtRu codeposits [62,98], and Ru adsorbed on Pt [99]. The emphasis has recently been placed on producing high-activity surfaces made of platinum/ruthenium composites as a catalyst for methanol oxidation [100]. [Pg.571]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]

Procedures for determining the quaUty of formaldehyde solutions ate outlined by ASTM (120). Analytical methods relevant to Table 5 foUow formaldehyde by the sodium sulfite method (D2194) methanol by specific gravity (D2380) acidity as formic acid by titration with sodium hydroxide (D2379) iron by colorimetry (D2087) and color (APHA) by comparison to platinum—cobalt color standards (D1209). [Pg.496]

A viable electrocatalyst operating with minimal polarization for the direct electrochemical oxidation of methanol at low temperature would strongly enhance the competitive position of fuel ceU systems for transportation appHcations. Fuel ceUs that directiy oxidize CH OH would eliminate the need for an external reformer in fuel ceU systems resulting in a less complex, more lightweight system occupying less volume and having lower cost. Improvement in the performance of PFFCs for transportation appHcations, which operate close to ambient temperatures and utilize steam-reformed CH OH, would be a more CO-tolerant anode electrocatalyst. Such an electrocatalyst would reduce the need to pretreat the steam-reformed CH OH to lower the CO content in the anode fuel gas. Platinum—mthenium alloys show encouraging performance for the direct oxidation of methanol. [Pg.586]

Ion implantation has also been used for the creation of novel catalyticaHy active materials. Ruthenium oxide is used as an electrode for chlorine production because of its superior corrosion resistance. Platinum was implanted in mthenium oxide and the performance of the catalyst tested with respect to the oxidation of formic acid and methanol (fuel ceU reactions) (131). The implantation of platinum produced of which a catalyticaHy active electrode, the performance of which is superior to both pure and smooth platinum. It also has good long-term stabiHty. The most interesting finding, however, is the complete inactivity of the electrode for the methanol oxidation. [Pg.398]

Oxidation catalysts are either metals that chemisorb oxygen readily, such as platinum or silver, or transition metal oxides that are able to give and take oxygen by reason of their having several possible oxidation states. Ethylene oxide is formed with silver, ammonia is oxidized with platinum, and silver or copper in the form of metal screens catalyze the oxidation of methanol to formaldehyde. Cobalt catalysis is used in the following oxidations butane to acetic acid and to butyl-hydroperoxide, cyclohexane to cyclohexylperoxide, acetaldehyde to acetic acid and toluene to benzoic acid. PdCh-CuCb is used for many liquid-phase oxidations and V9O5 combinations for many vapor-phase oxidations. [Pg.2095]

This method of preparation is suitable for producing primary alkyl lactates but is unsatisfactory for /3-methallyl lactate because the strong mineral acid catalyzes the rearrangement of methallyl alcohol to isobutyraldehyde. Methyl lactate can be made conveniently (80-85% yield) by heating 1 mole of lactic acid condensation polymer with 2.5-5 moles of methanol and a small quantity of sulfuric acid at 100 for 1-4 hours in a heavy-walled bottle, such as is used for catalytic hydrogenation with a platinum catalyst. [Pg.6]

The hydrogenation of 5a-cholestanone (58) in methanolic hydrobromic acid over platinum gives 3j5-methoxycholestane ° (61). This compound is also obtained from the palladium oxide reduction of (58) in methanol in the absence of acid. Hydrogenation of 5 -cholestanone also gives the 3j5-methoxy product under these conditions. Reduced palladium oxides are quite effective for the conversion of ketones to ethers. The use of aqueous ethanol as the solvent reduces the yield of ether. Ketals are formed on attempted homogeneous hydrogenation of a 3-keto group in methanol. ... [Pg.136]

A mixture of A,A-dimethylcyclohexylmethylamine (49.4 g, 0.35 mole. Chapter 2, Section I), 30% hydrogen peroxide (39.5 g, 0.35 mole) and 45 ml of methanol is placed in a 500-ml Erlenmeyer flask, covered with a watch glass, and allowed to stand at room temperature. After 2 hours, and again after an additional 3 hours, 30% hydrogen peroxide (39.5-g portions each time) is added with swirling. The solution is allowed to stand at room temperature for an additional 30 hours, whereupon excess peroxide is destroyed by the cautious addition (swirling) of a small amount of platinum black. Cessation of oxygen evolution indicates complete decomposition of the excess peroxide. [Pg.54]

The solubility of the resulting product may dictate the choice of solvent. Reductive alkylation of norepinephrine with a series of keto acids proceeded smoothly over platinum oxide in methanol-acetic acid mixtures. However, when n = 4 or 5, the product tended to precipitate from solution, making catalyst separation difficult. The problem was circumvented by using glacial acetic acid as solvent 38). [Pg.87]

By selection of conditions and catalyst, the intermediate hydroxyimine (11) can be directed to either (he hydroxy ketone (10) or amino alcohol (12), Over platinum oxide in methanol-acetic acid-water the amino alcohol forms, whereas over alkali-free Ra-Ni in methanol-water or over 10% Pd-on-C in methanol-water containing boric acid, the hydroxy ketones form in excellent yield. Nitrile oxide cycloadditions have been applied to five-membered ring syntheses (.50). [Pg.142]

A solution of 50 g of 1 -azabicyclo [2.2.2] -3-octanone hydrochloride in 200 cc of water was hydrogenated at room temperature and 50 atm pressure with 1 g of platinum oxide as catalyst. After the calculated amount of hydrogen had been absorbed, the mixture was filtered and concentrated in vacuo to dryness. The residual product was recrystallized from a mixture of methanol and acetone and formed prisms melting above 300°C. It was identified as 1 -ezabicy-clo[2.2.2] -3-octanol hydrochloride. [Pg.8]

A mixture of 26 g (0.1 mol) of 0 -(4-pyridyl)-benzhydrol, 1.5 g of platinum oxide, and 250 ml of glacial acetic acid is shaken at 50°-60°C under hydrogen at a pressure of 40-50 Ib/in. The hydrogenation is complete in 2 to 3 hours. The solution is filtered and the filtrate evap-rated under reduced pressure. The residue is dissolved in a mixture of equal parts of methanol and butanone and 0.1 mol of concentrated hydrochloric acid is added. The mixture is cooled and filtered to give about 30 g of 0 -(4-piperldyl)-benzhydrol hydrochloride, MP 283°-285°C, as a white, crystalline substance. [Pg.114]

The flask of a Parr hydrogenation apparatus was charged with 10,5 g of 3,3-diphenylpropyl-amine, 7.7 g of cyclohexylacetone, 50 ml methanol and 150 mg of platinum dioxide. Hydrogen at a pressure of 3 atmospheres was introduced and the mixture stirred. Upon absorption of the theoretical amount of hydrogen, stirring is discontinued, the catalyst is filtered off and the solution is evaporated to dryness. The residue is taken up with ether and the hydrochloride is precipitated with HCI in alcoholic solution. The product, as collected on a filter and washed with ether, is recrystallized from isopropanol. Yield 17 g (92.5% of theory). [Pg.545]

A solution of 20 g of 1 -isonicotinyl-2-isopropy lidene hydrazine in 1 50 cc of methanol was reduced with hydrogen at room temperature and 50 psi using 300 mg of platinum black as a catalyst. [Pg.838]

TDicvclohexvl-2-(2 -pvridvl)ethylene hydrochloride (15 grams) in 150 ml of ethanol was hydrogenated in the presence of platinum oxide at about 60 pounds per square inch of hydrogen pressure. The product, 1,1-dicvclohexvl-2-(2 -piperidyl)ethane hydrochloride, crystal-Ii2ed from a mixture of methanol and methyl ethyl ketone as a white solid melting at 243 to 245.5 C. [Pg.1191]

The polarographic determination of metal ions such as Al3 + which are readily hydrolysed can present problems in aqueous solution, but these can often be overcome by the use of non-aqueous solvents. Typical non-aqueous solvents, with appropriate supporting electrolytes shown in parentheses, include acetic acid (CH3C02Na), acetonitrile (LiC104), dimethylformamide (tetrabutyl-ammonium perchlorate), methanol (KCN or KOH), and pyridine (tetraethyl-ammonium perchlorate), In these media a platinum micro-electrode is employed in place of the dropping mercury electrode. [Pg.614]

Complete reduction of the azepine ring to hexahydroazepine has been effected with hydrogen and palladium,40 or platinum,135 239 catalysts. For example, ethyl 1 f/-azepine-l-carboxylate is reduced quantitatively at room temperature to ethyl hexahydroazepine-l-carboxylate (92% bp 118 —120 3C).134 136 TV-Phenyl-S/Z-azepin -amine (1), however, with platinum(IV) oxide and hydrogen in methanol yields the hexahydroazepine 2 in which the amidine unit is preserved in the final product.34 The same result is obtained using 5% palladium/barium carbonate, or 2 % palladium/Raney nickel, as catalyst. [Pg.179]

Whereas reduction of dimethyl 1,2,7-trimethyl-l T/-azepine-3,6-dicarboxylate (5) with platinum and hydrogen in cyclohexane yields the hexahydroazepine 6, hydrogenation in methanol solution results in loss of methylamine and formation of dimethyl 2,3-dimethylbenzene-1,4-dicar-boxylate (52% mp 66-67 C).239... [Pg.179]

Reductions of 5//-dibenz[/j,/]azepines to their 10,11-dihydro derivatives have been accomplished in high yield with sodium in ethanol,29 133 with copper(II) chromite (2CuO Cr203) and barium carbonate,224 with 5 % palladium on charcoal29 or platinum(IV) oxide30 in ethanol, and with magnesium in methanol.225 4//-Thieno[3,2-/)][1]benzazepine is reduced similarly with hydrogen and palladium on charcoal in ethanol.137... [Pg.285]

When 1-methyl-, 1,2- and 1,3-dimethyl-indoles were oxidized on a platinum electrode in methanolic ammonium bromide solution, in addition to the oxidation products, products of nuclear bromination at the 3-and 5-positions were observed. 1,2- Dimethylindole (20) gave 3-bromo-1,2-dimethylindole (81CCC3278) [bromine in chloroform gave the same product (85CHE786)]. In acidic conditions the amidinium cation formed from 20 was brominated in the 5-position (Scheme 14). Acylated 2-aminoindoles reacted similarly in neutral media to give 3-bromo derivatives and when protonated to give 5-bromo products. Bromine in chloroform transformed l-methyl-2-dimethylaminoindole (21) into the 3-bromo derivative (85CHE782) (Scheme 15). [Pg.262]


See other pages where Platinum methanol is mentioned: [Pg.343]    [Pg.36]    [Pg.343]    [Pg.36]    [Pg.259]    [Pg.889]    [Pg.941]    [Pg.478]    [Pg.10]    [Pg.387]    [Pg.280]    [Pg.486]    [Pg.292]    [Pg.171]    [Pg.258]    [Pg.87]    [Pg.240]    [Pg.128]    [Pg.220]    [Pg.88]    [Pg.99]    [Pg.158]    [Pg.463]    [Pg.602]    [Pg.920]    [Pg.1015]    [Pg.1208]    [Pg.1275]    [Pg.685]    [Pg.252]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Deuterium exchange with methanol over platinum

Low-Platinum-Content Electrocatalysts for Methanol and Ethanol Electrooxidation

Methanol at a Platinum Electrode

Methanol carbonylation, platinum

Methanol deuterium exchange over platinum

Methanol on platinum

Methanol, platinum complex

Ordered mesoporous carbon-supported nano-platinum catalysts application in direct methanol fuel cells

Platinum Alloy Catalysts for Direct Methanol Fuel Cell Anodes

Platinum catalysts methanol formation rate

Platinum methanol formation rate

Platinum methanol synthesis over

© 2024 chempedia.info