Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear Bromination

Bromination, nuclear, aluminum chloride as catalyst for, 40, 7 Bromine, reaction with furan in methanol to yield 2,5-dimethoxy-2,5-dihydrofuran, 40, 29 3-Bromoacetophenone, 40, 7... [Pg.55]

A number of studies involved doping inorganic bromides, followed by SSNMR experiments.333 314,215,221, 4- s Ge ej-ally, it is expected that as one increases the impurity fraction, the bromine NMR signal intensity decreases and the signal breadth increases (Figures 18 and 19). The reasons for the trend are obvious the impurity introduces crystalline strain, which results in a larger EFG at the bromine nuclear site. The source of this strain is postulated by Das and Dick to be due to subtle lattice displacements, which cause ions around the impurity site to become polarized and thus destroy the cubic electric field symmetry and significantly alter the local Studies have also been carried out which... [Pg.304]

A white solid, m.p. 178 C. Primarily of interest as a brominaling agent which will replace activated hydrogen atoms in benzylic or allylic positions, and also those on a carbon atom a to a carbonyl group. Activating influences can produce nuclear substitution in a benzene ring and certain heterocyclic compounds also used in the oxidation of secondary alcohols to ketones. [Pg.69]

Aniline undergoes very ready nuclear substitution by bromine even in the cold, the bromine atoms entering the two ortho positions and the para position with the formation of symmetric or 2,4.6-tribromoaniline. The presence... [Pg.165]

J. W. Grisard and G. D. Oliver, The Hapor Pressure and Heat Hapori ation of Bromine Trifluoride, R-25, Plant Report R-766, U.C.C. Nuclear Co., Oak Ridge, Term., June 8, 1951. [Pg.188]

When simple Hquids like naphtha are cracked, it may be possible to determine the feed components by gas chromatography combined with mass spectrometry (gc/ms) (30). However, when gas oil is cracked, complete analysis of the feed may not be possible. Therefore, some simple definitions are used to characterize the feed. When available, paraffins, olefins, naphthenes, and aromatics (PONA) content serves as a key property. When PONA is not available, the Bureau of Mines Correlation Index (BMCI) is used. Other properties like specific gravity, ASTM distillation, viscosity, refractive index. Conradson Carbon, and Bromine Number are also used to characterize the feed. In recent years even nuclear magnetic resonance spectroscopy has been... [Pg.434]

Apart from the nuclear bromination observed (Section 2.15.13.1) in the attempted radical bromination of a side-chain methyl group leading to (396), which may or may not have involved radical intermediates, the only other reaction of interest in this section is a light-induced reduction of certain hydroxypyrido[3,4-f)]pyrazines or their 0x0 tautomers analogous to that well-known in the pteridine field (63JCS5156). Related one-electron reduction products of laser photolysis experiments with 1 -deazaflavins have been described (79MI21502). [Pg.254]

If chlorine and bromine are allowed to act upon an aromatic hydrocarbon like toluene, which has a side-chain, substitution may occur in the nucleus or the side-chain, according to the conditions. Generally speaking, in the cold and in presence of a halogen carrier, nuclear substitution occurs, Irut at a high temperatuie the halogen passes into the side-chain (see Piep. [Pg.272]

The bromination of 5,8-dimethoxyquinoxaline in methanol gives a mixture of 6-bromo and 6,7-dibromo compounds/ Treatment of 2-methylquinoxaline with bromine in acetic acid yields a mixture of 27% of 2 bromomethyl- and 37% of 2-dibromomethyl-quinoxaline." Thus in the absence of powerfully activating groups, side-chain rather than nuclear substitution takes place. [Pg.212]

As in the case of the steroids, introduction of additional nuclear substituents yields morphine analogs of increased potency. The more important of these are derived from one of the minor alkaloids that occur in opium. Thebaine (14), present in crude opium in about one-tenth the amount of morphine, exhibits a reactive internal diene system that is well known to undergo various addition reactions in a 1,4 manner (e.g., bromination). Thus, reaction with hydrogen peroxide in acid may be visualized to afford first the 14-hydroxy-6-hemiketal (15). Hydrolysis yields the isolated unsaturated ketone (16). Catalytic reduction... [Pg.289]

A mixture of 24 g of 1,3-dimethyladamantane and BO ml of bromine was refluxed for 6 hours. The reaction product mixture was cooled, taken up in about 200 ml of chloroform, and poured onto ice. The excess bromine was removed by adding sodium hydrosulfite. The chloroform layer was separated from the aqueous layer, dried, concentrated in vacuo, and distilled at reduced pressure to yield 30.5 g of product having a boiling point of about 11B°C at 5-6 mm np = 1.5169-1.51B2. The product was identified by nuclear magnetic resonance (NMR) and elemental analyses as 1-bromo-3,5-dimethyladamantane. [Pg.927]

When 1-methyl-, 1,2- and 1,3-dimethyl-indoles were oxidized on a platinum electrode in methanolic ammonium bromide solution, in addition to the oxidation products, products of nuclear bromination at the 3-and 5-positions were observed. 1,2- Dimethylindole (20) gave 3-bromo-1,2-dimethylindole (81CCC3278) [bromine in chloroform gave the same product (85CHE786)]. In acidic conditions the amidinium cation formed from 20 was brominated in the 5-position (Scheme 14). Acylated 2-aminoindoles reacted similarly in neutral media to give 3-bromo derivatives and when protonated to give 5-bromo products. Bromine in chloroform transformed l-methyl-2-dimethylaminoindole (21) into the 3-bromo derivative (85CHE782) (Scheme 15). [Pg.262]

Electronegative groups do not invariably prevent nuclear bromination, but reaction conditions must be much more severe, and the orientation of substitution may be affected by the substituent. Thus 6-nitroquinoline was brominated in sulfuric acid at 100°C to give the 8-bromo product (71) in 51% yield 8-methyl-5-nitroquinoline gave a 69% yield of the 7-bromo derivative (72) under similar conditions, whereas 7-chloroquinoline was transformed into the 5-bromo product (93%) (88CHE892) (Scheme 35). In a sealed tube reaction with bromine, 8-nitroquinoline gave a mixture... [Pg.291]

Allylmagnesium bromide, 41, 49 reaction with acrolein, 41, 49 5-Allyl-l,2,3,4,5-pentachlorocyclopen-tadiene, 43, 92 Allyltriphenyltin, 41, 31 reaction with phenyllithium, 41, 30 Aluminum chloride, as catalyst, for isomerization, 42, 9 for nuclear bromination and chlorination of aromatic aldehydes and ketones, 40, 9 as Friedel-Crafts catalyst, 41, 1 Amidation, of aniline with maleic anhydride, 41, 93... [Pg.106]

The reaction of alkylbenzenes with copper(II) bromide is critically influenced by the presence of water in small quantities (ref. 10). With toluene, nuclear bromination predominates in a rigorously anhydrous system. When small amounts... [Pg.18]

Similarly, Dakka and Sasson (ref. 26) showed that benzylic alcohols could be selectively oxidized to the corresponding aromatic aldehydes using HBr/H202 as the oxidant (Fig. 23). The reaction was not successful with electron-rich aromatics which underwent competing nuclear bromination. [Pg.298]

Unless the reaction mixture is maintained at strong reflux during this addition, considerable nuclear bromination occurs with a corresponding decrease in 3-thenyl bromide yield. [Pg.109]

Also, ferric ion promotes nuclear (ionic) bromination of benzene derivatives at the expense of the radical reaction at the side chain. [Pg.250]


See other pages where Nuclear Bromination is mentioned: [Pg.83]    [Pg.151]    [Pg.207]    [Pg.83]    [Pg.151]    [Pg.207]    [Pg.303]    [Pg.184]    [Pg.251]    [Pg.70]    [Pg.58]    [Pg.245]    [Pg.125]    [Pg.69]    [Pg.17]    [Pg.18]    [Pg.19]    [Pg.219]    [Pg.433]    [Pg.63]    [Pg.1719]    [Pg.233]    [Pg.146]    [Pg.177]    [Pg.520]    [Pg.389]    [Pg.428]   
See also in sourсe #XX -- [ Pg.155 , Pg.168 ]




SEARCH



Bromination, nuclear, aluminum chloride as catalyst for

Bromine nuclear properties

Nuclear Chlorine, Bromine or Fluorine from a Phenolic Ether

© 2024 chempedia.info