Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma membranes animal

Cholesterol is a principal component of animal cell plasma membranes, and much smaller amounts of cholesterol are found in the membranes of intracellular organelles. The relatively rigid fused ring system of cholesterol and the weakly polar alcohol group at the C-3 position have important consequences for the properties of plasma membranes. Cholesterol is also a component of lipoprotein complexes in the blood, and it is one of the constituents oiplaques that form on arterial walls in atherosclerosis. [Pg.255]

T-tubule is a transverse invagination of the plasma membrane, which occurs at the specified sites characteristic to animal species and organs, i.e. at the Z-line in cardiac ventricle muscle and non-mammalian vertebrate skeletal muscle and at the A-I junction in mammalian skeletal muscle. It is absent in all avian cardiac cells, all cardiac conduction cells, many mammalian atrial cells and most smooth muscle cells. T-tubule serves as an inward conduit for the action potential. [Pg.1242]

Fourier Transform Infra Red Spectroscopy, Arrhenius plots of rate vs. temperature of a membrane-linked phenomenon) that biological membranes from nonhibemat-ing or cold acclimated animals show a phase transition around 12 °C to 17 °C. Thus, at useful cold storage temperatures, it is expected that the plasma membrane and membranes of the cellular organelles will be mostly in a gel or solid state. [Pg.387]

The growth requirement for EGF is a good example in this regard. EGF stimulates the growth of many different types of animal cells in culture. In order to initiate the growth response, EGF interacts with specific EGF receptors localized in the plasma membrane, activating a tyrosine-specific protein kinase, which is an intrinsic part of the receptor (Figure 12). As a consequence, specific proteins are phosphorylated at tyrosine residues, and some of these proteins (which are also... [Pg.478]

Cholesterol (Figure 14-17) is widely distributed in all cells of the body but particularly in nervous tissue. It is a major constituent of the plasma membrane and of plasma lipoproteins. It is often found as cholesteryl ester, where the hydroxyl group on position 3 is esteri-fied with a long-chain fatty acid. It occurs in animals but not in plants. [Pg.118]

Effects of Allelochemlcals on ATPases. Several flavonoid compounds inhibit ATPase activity that is associated with mineral absorption. Phloretin and quercetin (100 pM) inhibited the plasma membrane ATPase Isolated from oat roots (33). The naphthoquinone juglone was inhibitory also. However, neither ferulic acid nor salicylic acid inhibited the ATPase. Additional research has shown that even at 10 mM salicylic acid inhibits ATPase activity only 10-15% (49). This lack of activity by salicylic acid was substantiated with the plasma membrane ATPase Isolated from Neurospora crassa (50) however, the flavonols fisetln, morin, myricetin, quercetin, and rutin were inhibitory to the Neurospora ATPase. Flavonoids inhibited the transport ATPases of several animal systems also (51-53). Thus, it appears that flavonoids but not phenolic acids might affect mineral transport by inhibiting ATPase enzymes. [Pg.171]

Bacteria normally harbour a single, circular chromosome that tends to be tethered to the bacterial plasma membrane and tends to have few if any closely associated proteins. Many bacteria also contain extra-chromosomal DNA in the form of plasmids, as will be discussed later. Eukaryotes (plants, animals and yeasts) posses multiple linear chromosomes contained within a cell nucleus, and these chromosomes are normally closely associated with proteins termed histones (the pro-tein-DNA complex is termed chromatin). Eukaryotes also invariably possess DNA sequences within mitochondria and in chloroplasts in plants. The (usually circular) DNA molecules are much... [Pg.41]

Although apoE HDL particles are formed by astrocytes in vitro, the brain contents of apoE knockout (-/-) were not found to differ in lipid content in comparison to those obtained from normal animals [14]. A probable explanation is that newly synthesized cholesterol can be transported from astrocyte ER to plasma membrane via an alternative route that employs caveolae to form apoAl-HDL [15]. [Pg.27]

Atrophy of the thymus is a consistent finding in mammals poisoned by 2,3,7,8-TCDD, and suppression of thymus-dependent cellular immunity, particularly in young animals, may contribute to their death. Although the mechanisms of 2,3,7,8-TCDD toxicity are unclear, research areas include the role of thyroid hormones (Rozman et al. 1984) interference with plasma membrane functions (Matsumura 1983) alterations in ligand receptors (Vickers et al. 1985) the causes of hypophagia (reduced desire for food) and subsequent attempts to alter or reverse the pattern of weight loss (Courtney et al. 1978 Seefeld et al. 1984 Seefeld and Peterson 1984) and excretion kinetics of biotransformed metabolites (Koshakji et al. 1984). [Pg.1053]

In spite of the variety of appearances of eukaryotic cells, their intracellular structures are essentially the same. Because of their extensive internal membrane structure, however, the problem of precise protein sorting for eukaryotic cells becomes much more difficult than that for bacteria. Figure 4 schematically illustrates this situation. There are various membrane-bound compartments within the cell. Such compartments are called organelles. Besides the plasma membrane, a typical animal cell has the nucleus, the mitochondrion (which has two membranes see Fig. 6), the peroxisome, the ER, the Golgi apparatus, the lysosome, and the endosome, among others. As for the Golgi apparatus, there are more precise distinctions between the cis, medial, and trans cisternae, and the TGN trans Golgi network) (see Fig. 8). In typical plant cells, the chloroplast (which has three membranes see Fig. 7) and the cell wall are added, and the lysosome is replaced with the vacuole. [Pg.302]

The membrane potential of resting cells (resting potential see p. 350) is -0.05 to -0.09 V—i. e., there is an excess negative charge on the inner side of the plasma membrane. The main contributors to the resting potential are the two cations Na"" and K", as well as Cl and organic anions (1). Data on the concentrations of these ions outside and inside animal cells, and permeability coef -cients, are shown in the table (2). [Pg.126]

Cholesterol is a major constituent of the cell membranes of animal cells (see p. 216). It would be possible for the body to provide its full daily cholesterol requirement (ca. 1 g) by synthesizing it itself However, with a mixed diet, only about half of the cholesterol is derived from endogenous biosynthesis, which takes place in the intestine and skin, and mainly in the liver (about 50%). The rest is taken up from food. Most of the cholesterol is incorporated into the lipid layer of plasma membranes, or converted into bile acids (see p. 314). A very small amount of cholesterol is used for biosynthesis of the steroid hormones (see p. 376). In addition, up to 1 g cholesterol per day is released into the bile and thus excreted. [Pg.172]

The illustration shows a model of a small section of a membrane. The phospholipids are the most important group of membrane lipids. They include phosphatidylcholine (lecithin), phosphatidylethanolamine, phos-phatidylserine, phosphatidylinositol, and sphingomyelin (for their structures, see p. 50). in addition, membranes in animal cells also contain cholesterol (with the exception of inner mitochondrial membranes). Clycoli-pids (a ganglioside is shown here) are mainly found on the outside of the plasma membrane. Together with the glycoproteins, they form the exterior coating of the cell (the gly-cocalyx). [Pg.214]

The most important membranes in animal cells are the plasma membrane, the inner and outer nuclear membranes, the membranes of the endoplasmic reticulum (ER) and the Golgi apparatus, and the inner and outer mitochondrial membranes. Lysosomes, peroxisomes, and various vesicles are also separated from the cytoplasm by membranes. In plants, additional membranes are seen in the plastids and vacuoles. All membranes show polarity—e., there is a difference in the composition of the inner layer (facing toward the cytoplasm) and the outer layer (facing away from it). [Pg.216]


See other pages where Plasma membranes animal is mentioned: [Pg.232]    [Pg.301]    [Pg.307]    [Pg.541]    [Pg.812]    [Pg.25]    [Pg.481]    [Pg.65]    [Pg.208]    [Pg.124]    [Pg.4]    [Pg.69]    [Pg.111]    [Pg.117]    [Pg.197]    [Pg.303]    [Pg.235]    [Pg.350]    [Pg.234]    [Pg.725]    [Pg.866]    [Pg.95]    [Pg.331]    [Pg.522]    [Pg.611]    [Pg.809]    [Pg.138]    [Pg.217]    [Pg.54]    [Pg.121]    [Pg.124]    [Pg.99]    [Pg.105]    [Pg.201]    [Pg.61]    [Pg.282]    [Pg.101]   
See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Membranes plasma

© 2024 chempedia.info