Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma cholinesterases inhibition

The purpose of this chapter is not to discuss the merits, or lack thereof, of using plasma cholinesterase inhibition as an adverse effect in quantitative risk assessments for chlorpyrifos or other organophosphate pesticides. A number of regulatory agencies consider the inhibition of plasma cholinesterase to be an indicator of exposure, not of toxicity. The U.S. Environmental Protection Agency, at this point, continues to use this effect as the basis for calculating the reference doses for chlorpyrifos, and it is thus used here for assessing risks. [Pg.36]

Based on the data from controlled human studies, the NOEL for plasma cholinesterase inhibition for a single dose of chlorpyrifos is between 0.1 and 0.5 mg/kg bw/day, and the more conservative 0.1 mg/kg bw/day (100 pg/kg bw/day) is used in this assessment as the acute NOEL for chlorpyrifos. The repeated dose NOEL in humans is 0.03 mg/kg bw/day (30 pg/kg bw/day), based on plasma cholinesterase activity, and this is the basis for the establishment of the reference dose of 0.003 mg/kg bw/day (3 pg/kg bw/day) used by the EPA in assessing dietary risk to chlorpyrifos. For the work described here, both NOELs are used as bases for assessing risks to persons who have the potential for non-dietary exposure to chlorpyrifos. For exposures that are infrequent or of short duration, the 100 pg/kg bw/day NOEL is assumed to be the more appropriate value, and the lower 30 pg/kg bw/day will be used in those situations in which exposure may be considered to be more frequent. ... [Pg.37]

Hobbiger, F., 1955 Effect of nlcotinhydroxamlc acid methlodlde on human plasma cholinesterase inhibited by organophosphates containing a diall lphosphato group. Brit. J. Pharmac. 10 356-362. [Pg.52]

Lithium carbonate delays the onset and prolongs the action of depolarizing relaxants (309,310). The principal mechanism of action is disputed. Factors suggested have been the development of dual block, reduced sensitivity of the end-plate for suxamethonium, diminished synthesis or release of acetylcholine, and plasma cholinesterase inhibition (310-312). The clinical importance is also disputed. [Pg.3266]

The US EPA Acute Dietary population adjusted dose (PAD) is 0.0007 mg kg day fenthion. This standard is based on plasma cholinesterase inhibition in monkey (NOAEL = 0.07mgkg day ), divided by a composite uncertainty factor of 100 (lOx interspecies, lOx intraspecies), and a lx factor for Food Quality Protection Act (FQPA). [Pg.1139]

As with most organophosphorus insecticides, acute toxicity is predominant. However tolerance to repeated exposures can occur. The no-observed-adverse-effect level (NOAEL) established from a rabbit developmental toxicity study was 50 mg kg day based on maternal toxicity (i.e., reduced body weight gain). Developmental toxicity studies were negative in rats and rabbits. A two-generation reproductive toxicity study in rats showed no increased sensitivity in pups compared to dams. Repeated exposure to malathion does not cause delayed neurotoxicity. The NOAEL of 2.4 mg kg day was established based on plasma cholinesterase inhibition in a long-term dosing study in rats. [Pg.1588]

Male rats exposed to 264 mg/m of methyl parathion by inhalation had 59% (range 53-61%) inhibition of blood (a combination of erythrocyte and plasma) cholinesterase 1 hour after exposure (EPA 1978e). These animals had typical cholinergic signs of toxicity salivation, exophthalmos, laerimation, spontaneous defecation and urination, and muscle fasciculation. Values for controls were not provided. Death was not correlated to the degree of eholinesterase inhibition in whole blood. [Pg.47]

Mice that were exposed dermally to residues of methyl parathion in emulsifiable concentrate on foliage, and were muzzled to prevent oral intake, developed inhibition of plasma cholinesterase and erythrocyte cholinesterase after two 10-hour exposures (Skinner and Kilgore 1982b). For the organophosphate pesticides tested in this study, cholinergic signs generally were seen in mice with cholinesterase inhibition >50% results for this end point were not broken down by pesticide. [Pg.79]

There is a second type of cholinesterase called butyrylcholinesterase, pseudocholinesterase, or cholinesterase. This enzyme is present in some nonneural cells in the central and peripheral nervous systems as well as in plasma and serum, the liver, and other organs. Its physiologic function is not known, but is hypothesized to be the hydrolysis of esters ingested from plants (Lefkowitz et al. 1996). Plasma cholinesterases are also inhibited by organophosphate compounds through irreversible binding this binding can act as a detoxification mechanism as it affords some protection to acetylcholinesterase in the nervous system (Parkinson 1996 Taylor 1996). [Pg.102]

Diagnosis of organophosphate poisoning (including methyl parathion) can be confirmed by evaluation of serum (plasma) cholinesterase and erythrocyte cholinesterase. However, cholinesterase inhibition is not specific for organophosphates. For example, carbamate insecticides also result in cholinesterase inhibition, which is usually transitory. Erythrocyte cholinesterase measurement is a specific test for... [Pg.113]

Pope CN, Chakraborti TK. 1992. Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposures. Toxicology 73 35-43. [Pg.226]

The initial enthusiasm for tacrine and velnacrine, which are the anticholinesterases most studied clinically, has been tempered by the fact that not all patients respond. Most show the peripheral parasympathomimetic effects of cholinesterase inhibition, e.g. dyspepsia and diarrhoea, as well as nausea and vomiting, and about half of the patients develop hepatotoxicity with elevated levels of plasma alanine transaminase. While some peripheral effects can be attenuated with antimuscarinics that do not enter the brain, these add further side-effects and the drop-out rate from such trials is high (<75%) in most long-term studies. Donepezil appears to show less hepatotoxicity but its long-term value remains to be determined. [Pg.387]

Consistent decreases in plasma cholinesterase may not have been observed in rats and dogs because they were treated with lower doses of diisopropyl methylphosphonate. In general, depression of plasma cholinesterase, also known as pseudocholinesterase or butyrylcholinesterase, is considered a marker of exposure rather than an adverse effect. Depression of cholinesterase activity in red blood cells (acetylcholinesterase) is a neurological effect thought to parallel the inhibition of brain acetylcholinesterase activity. It is considered an adverse effect. Acetylcholinesterase is found mainly in nervous tissue and erythrocytes. Diisopropyl methylphosphonate was not found to inhibit RBC... [Pg.57]

Although this study (Hart 1980) did not identify an effect level, the NOAEL is below the LOEL found in all studies examining the toxicity of diisopropyl methylphosphonate. The LOEL for diisopropyl methylphosphonate is 262 mg/kg/day for male mink and 330 mg/kg/day for female mink (Bucci et al. 1997), doses at which statistically significant decreases in plasma cholinesterase (butyrylcholinesterase) but not RBC cholinesterase (acetylcholinesterase) activity were observed (Bucci et al. 1997). In general, a decrease in plasma cholinesterase activity is considered to be a marker of exposure rather than a marker of adverse effect, while a decrease in RBC acetylcholinesterase activity is a neurological effect thought to parallel the inhibition of brain acetylcholinesterase activity and is thus considered an adverse effect. Diisopropyl methylphosphonate was not found to inhibit red blood cell cholinesterase at doses at which plasma cholinesterase was significantly inhibited. No effects were observed in males at 45 mg/kg/day (Bucci et al. 1997) or at 63 mg/kg/day (Bucci et al. 1994), and no effects were observed in females at 82 mg/kg/day (Bucci et al. 1994), or at 57 mg/kg/day (Bucci et al. 1997). [Pg.81]

The inhibition of two cholinesterase activities in blood can also be used to confirm exposure to certain organophosphate ester compounds. Red blood cell acetylcholinesterase is the same cholinesterase found in the gray matter of the central nervous system and motor endplates of sympathetic ganglia. Synonyms for this enzyme include specific cholinesterase, true cholinesterase, and E-type cholinesterase. Plasma cholinesterase is a distinct enzyme found in intestinal mucosa, liver, plasma, and white matter of the central nervous system. Synonyms for this enzyme include nonspecific cholinesterase, pseudocholinesterase, butyrylcholinesterase, and S-type cholinesterase (Evans 1986). Nonspecific cholinesterase is thought to be a very poor indicator of neurotoxic effects. [Pg.224]

Pharmacologically, carbofuran inhibits cholinesterase, resulting in stimulation of the central, parasympathetic, and somatic motor systems. Sensitive biochemical tests have been developed to measure cholinesterase inhibition in avian and mammalian brain and plasma samples and are useful in the forensic assessment of carbamate exposure in human and wildlife pesticide incidents (Bal-lantyne and Marrs Hunt and Hooper 1993). Acute toxic clinical effects resulting from carbofuran exposure in animals and humans appear to be completely reversible and have been successfully treated with atropine sulfate. However, treatment should occur as soon as possible after exposure because acute carbofuran toxicosis can be fatal younger age groups of various species are more susceptible than adults (Finlayson et al. 1979). Carbofuran labels indicate that application is forbidden to streams, lakes, or ponds. In addition, manufacturers have stated that carbofuran is poisonous if swallowed, inhaled, or absorbed through the skin. Users are cautioned not to breathe carbofuran dust, fumes, or spray mist and treated areas should be avoided for at least 2 days (Anonymous 1971). Three points are emphasized at this juncture. First, some carbofuran degradation... [Pg.805]

Hunt, K.A. and M.J. Hooper. 1993. Development and optimization of reactivation techniques for carbamate-inhibited brain and plasma cholinesterases in birds and mammals. Anal. Biochem. 212 335-343. [Pg.824]

The cholinesterase-inhibiting activity of the phosphorofluoridates was compared quantitatively with that of eserine sulphate thus. To 0-2 ml. of heparinized human plasma was added 05 ml. of a solution containing either eserine or the phosphorofluoridate in varying concentrations then the mixture was kept at room temperature for 10 min. before 1 /tg. of acetylcholine in 1 c.c. saline solution was added. After 5 min. at room temperature, the mixture was made up to 10 ml. with frog saline containing eserine 1/100,000, which at once stopped the action of any cholinesterase not yet inactivated. The solution was then assayed for acetylcholine on the frog rectus-muscle preparation. [Pg.75]

Results. Both the dimethyl and di-isopropyl ester were found to inhibit the cholinesterase activity of human plasma, and their action was stronger than that of eserine. Of the two esters, the di-isopropyl had a more powerful cholinesterase-inhibiting action than the dimethyl ester. An accurate quantitative comparison was made of the action of the di-isopropyl ester with that of eserine sulphate. Under the conditions of Adrian s experiment, the ester at 1/80 million had about the same cholinesterase-inhibiting action as eserine sulphate at 1/14 million, i.e. the di-isopropyl ester was about 5 times as active as eserine sulphate when compared weight for weight, and about 3 times as active when compared in molar solution. [Pg.75]

Inhibition of the two principal human cholinesterases, acetylcholinesterase and pseudocholinesterase, may not always result in visible neurological effects (Sundlof et al. 1984). Acetylcholinesterase, also referred to as true cholinesterase, red blood cell cholinesterase, or erythrocyte cholinesterase is found in erythrocytes, lymphocytes, and at nerve synapses (Goldfrank et al. 1990). Inhibition of erythrocyte or lymphocyte acetylcholinesterase is theoretically a reflection of the degree of synaptic cholinesterase inhibition in nervous tissue, and therefore a more accurate indicator than pseudocholinesterase activity of inhibited nervous tissue acetylcholinesterase (Fitzgerald and Costa 1993 Sundlof et al. 1984). Pseudocholinesterase (also referred to as cholinesterase, butyrylcholinesterase, serum cholinesterase, or plasma cholinesterase) is found in the plasma, serum, pancreas, brain, and liver and is an indicator of exposure to a cholinesterase inhibitor. [Pg.33]

The maximum level of HMMA in the urine occurred 72 hours after exposure, which coincides with the time period for maximum urine catecholamine levels. There was a direct relationship between blood cholinesterase inhibition and catecholamine (adrenaline and noradrenaline) levels in the urine and blood (Brzezinski and Ludwicki 1973). Maximum inhibition of cholinesterase activity and maximum plasma catecholamine occurred during the first I-2 hours after exposure. However, catecholamine levels returned to normal more rapidly than cholinesterase activity. It was proposed that high levels of acetylcholine, which are normally associated with cholinesterase activity inhibition, caused a release of catecholamines from the stores in the adrenals. [Pg.73]


See other pages where Plasma cholinesterases inhibition is mentioned: [Pg.58]    [Pg.227]    [Pg.58]    [Pg.859]    [Pg.118]    [Pg.720]    [Pg.54]    [Pg.58]    [Pg.227]    [Pg.58]    [Pg.859]    [Pg.118]    [Pg.720]    [Pg.54]    [Pg.35]    [Pg.70]    [Pg.79]    [Pg.89]    [Pg.114]    [Pg.183]    [Pg.206]    [Pg.57]    [Pg.57]    [Pg.92]    [Pg.107]    [Pg.63]    [Pg.225]    [Pg.225]    [Pg.226]    [Pg.229]    [Pg.818]    [Pg.977]    [Pg.1080]    [Pg.208]    [Pg.34]   
See also in sourсe #XX -- [ Pg.4 , Pg.6 , Pg.36 , Pg.37 , Pg.42 ]




SEARCH



Cholinesterase

Plasma cholinesterases

© 2024 chempedia.info