Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plant nutrients fertilizers

Plant nutrients Fertilizers such as nitrates and phosphates... [Pg.231]

Secondary and Micronutrients in Fertilizers The great majority of farm fertilizers are produced, marketed, and appHed with regard only to the primary plant nutrient content. The natural supply of secondary and micronutrients in the majority of soils is usually sufficient for optimum growth of most principal crops. There are, however, many identified geographical areas and crop—soil combinations for which soil appHcation of secondary and/or micronutrient sources is beneficial or even essential. The fertilizer industry accepts the responsibiHty for providing these secondary and micronutrients, most often as an additive or adjunct to primary nutrient fertilizers. However, the source chemicals used to provide the secondary and micronutrient elements are usually procured from outside the fertilizer industry, for example from mineral processors. The responsibiHties of the fertilizer producer include procurement of an acceptable source material and incorporation in a manner that does not decrease the chemical or physical acceptabiHty of the fertilizer product and provides uniform appHcation of the added elements on the field. [Pg.241]

The tabulation of plant nutrient costs, by product, ia Table 16 shows the principal reasoa for the popularity of anhydrous ammonia as a fertilizer ia the United States. The fob price per ton of nitrogen in the form of ammonia is less than half that for any other nitrogen product. Also, ammonia s relatively high nitrogen content of 82.2% favors low transportation costs, in spite of the need for specialized handling equipment and procedures. [Pg.246]

Another area where improved air quaUty has impacted on sulfur use is ia agriculture. As sulfur dioxide emissions have decreased, sulfur content of soils has also decreased. Sulfur, recognized as the fourth most important plant nutrient, is necessary for the most efficient use of other nutrients and optimum plant growth. Because many soils are becoming sulfur-deficient, a demand for sulfur-containing fertilizers has been created. Farmers must therefore apply a nutrient that previously was freely available through atmospheric deposition and low grade fertilizers. [Pg.123]

Plant nutrient sulfur has been growing in importance worldwide as food production trends increase while overall incidental sulfur inputs diminish. Increasing crop production, reduced sulfur dioxide emissions, and shifts in fertilizer sources have led to a global increase of crop nutritional sulfur deficiencies. Despite the vital role of sulfur in crop nutrition, most of the growth in world fertilizer consumption has been in sulfiir-free nitrogen and phosphoms fertilizers (see Fertilizers). [Pg.125]

Agriculture is the largest industry for sulfur consumption. Historically, the production of phosphate fertilizers has driven the sulfur market. Phosphate fertilizers account for approximately 60% of the sulfur consumed globally. Thus, although sulfur is an important plant nutrient in itself, its greatest use in the fertilizer industry is as sulfuric acid, which is needed to break down the chemical and physical stmcture of phosphate rock to make the phosphate content more available to plant life. Other mineral acids, as well as high temperatures, also have the abiUty to achieve this result. Because of market price and availabiUty, sulfuric acid is the most economic method. About 90% of sulfur used in the fertilizer industry is for the production of phosphate fertilizers. Based on this technology, the phosphate fertilizer industry is expected to continue to depend on sulfur and sulfuric acid as a raw material. [Pg.125]

Plant nutrients From sewage and drainage of fertilized farmland. Causes rapid algae growth that uses up oxygen (eutrophication). [Pg.151]

Two weeks after planting in the pipes, the plants were thinned to 35 pipe per pipe each and the cups to one plant each, and the treatments begun. Each first, third and fifth day of the week for twelve weeks the pipes were flushed with three liters of tap water poured in the elbow end. The water flowed past the plant root systems and drained out the screened end of the pipes into a flask. One hundred milliliter aliquots of this water ( root exudate ) were used to water the soybean plants in the cups three times weekly. After each flushing, two liters of a low nitrogen (50 ppm N) complete nutrient solution (Peter s Hydro-sol ) were added to each pipe. The soybean plants in cups were watered as needed at other times with tap water. On alternate weeks the soybean plants were fertilized with the complete nutrient solution. At 4, 8 and 12 weeks after the root exudate treatments started eighty soybean plants (10 treatments x 2 soybean varieties x 4 blocks) were randomly chosen for analysis. The soil was washed free of the plant roots and each soybean plant was divided into roots, nodules, stems, leaves and fruits. The plant parts were dried at 105°C for four days and weighed. [Pg.236]

The ET cover cannot be tested at every landfill site so it is necessary to extrapolate the results from sites of known performance to specific landfill sites. The factors that affect the hydrologic design of ET covers encompass several scientific disciplines and there are numerous interactions between factors. As a consequence, a comprehensive computer model is needed to evaluate the ET cover for a site.48 The model should effectively incorporate soil, plant, and climate variables, and include their interactions and the resultant effect on hydrology and water balance. An important function of the model is to simulate the variability of performance in response to climate variability and to evaluate cover response to extreme events. Because the expected life of the cover is decades, possibly centuries, the model should be capable of estimating long-term performance. In addition to a complete water balance, the model should be capable of estimating long-term plant biomass production, need for fertilizer, wind and water erosion, and possible loss of primary plant nutrients from the ecosystem. [Pg.1064]

The term bioavailability has different meanings in different contexts and disciplines. Numerous definitions of bioavailability exist. Research on the relationship between bioavailability and chemical speciation (forms) originated in the field of soil fertility in the search for a good predictor for the bioavailability of essential plant nutrients (Traina and Laperche 1999). It is well accepted that dissolved nutrients are more labile and bioavailable to plants than solid-phase forms (including sorbed species). The same has been considered to be true for organic contaminants and their availability for microbial degradation. [Pg.260]

Plant nutrient level Appropriate fertilizer levels applied to minimize fertilizer cost and loss. [Pg.159]

Nonpoint source sampling occurs where the analyte of interest is dispersed over a large area such that a specific point of origin cannot be ascertained. The innate occurrence of analytes of interest would be an example of a nonpoint source. The occurrence of plant nutrients, either naturally occurring or from fertilization, is an example of a nonpoint source of agricultural analytes. Herbicides, insecticides, and pest-control agents are, once applied on a field scale, also potential nonpoint sources of analytes. It is common to think of crop... [Pg.161]

Another type of reaction that responds to WD cycles is the fixation of K and NH4 ions by smectite (3-7). The fixation of K in smectite has been studied extensively by soil scientists because of its effect on the availability of plant nutrients. The reaction also decreases smectite s ability to swell, decreases its cation exchange capacity (CEC), and modifies its BrjSnsted acidity. Therefore, an understanding of this phenomenon is applicable to many fields of study that are concerned with swelling clays, fields such as soil fertility, soil mechanics, waste disposal, clay catalysis, and the geochemistry of ground and surface waters. [Pg.297]

Mulching bare soil reduces water loss through evaporation and prevents germination of weed seeds. If a high- to medium-fertility soil improver is used, this also adds plant nutrients. Apply mulches to warm, moist soil in spring and summer. [Pg.265]

Eutrophication is the rapid depletion of dissolved oxygen in a body of water because of an increase in biological productivity. It is connected to the excess presence of plant nutrients in the environment, mainly nitrates and phosphorus. These compounds are connected to the excessive use or production of fertilizers. [Pg.18]

Description-. These ions enter the environment in the form of salts. Their presence is due to the extensive use of fertilizers as a result of the intensification of agriculture. As they are plant nutrients, they can lead to eutrophication—the enrichment of water by nutrients, causing an accelerated growth of algae and higher forms of plant life, leading to an undesirable disturbance in the balance of organisms present in the water and in the quality of the water. [Pg.24]

Agriculture therefore depends on there being a sufficient supply of inorganic nutrients to plants. Cereals, vegetables, fruit-bearing trees or plants, and animal fodder require bioavailable nutrients, that is, nutrients in forms that they can use. Since intensive agriculture depletes many natural nutrients, synthetic nutrients (fertilizers) must be supplied.1-7 In particular, we need to fix the inert N2 of the atmosphere as soluble, reactive compounds such as nitrates, ammonia, and ammonium salts. Other major fertilizer components are sulfate, potassium, and phosphate ions. It may also be necessary to provide trace nutrients, such as cobalt compounds, or to remove excess soil acidity by treatment with lime (CaO). World fertilizer demand in the year 2001 is expected to be about 1.5 x 10s metric tons N, 7.6 x 107 metric tons P2O5, and 6.7 x 107 metric tons K2O these projections represent an... [Pg.179]

Agricultural fertilization with sulphur is not a new concept - at the research level at least, sulphur has long been recognised as an essential plant nutrient. However because the complex role of sulphur - in soils, in plant material and in interaction with other essential element cycles - has never been fully understood, sulphur fertilizers have been used mainly on an empirical basis. As a result, sulphur fertilization has shown somewhat erratic performance Measured sulphur deficiency in soils has not always been correlated with poor crop yield and, as a corollary, sulphur fertilization of sulphur deficient soils has not always improved poor crop yields. Thus it has been difficult to routinely demonstrate an economic benefit to the farmer. [Pg.135]

Mixed fertilizer A fertilizer that contains the plant nutrients nitrogen, phosphorus, and potassium. [Pg.547]

Any fertilizer materials are minerals and have certain hardness values and therefore cause wear. Other plant nutrient salts or chemicals, particularly in the presence of moisture, will additionally produce corrosion. It is apt in this context to know some details of the scratch hardness of minerals which cause wear and abrasion, and this is normally measured in terms of Mohs scale [8]. [Pg.95]


See other pages where Plant nutrients fertilizers is mentioned: [Pg.492]    [Pg.492]    [Pg.213]    [Pg.215]    [Pg.233]    [Pg.238]    [Pg.177]    [Pg.177]    [Pg.240]    [Pg.222]    [Pg.268]    [Pg.90]    [Pg.147]    [Pg.148]    [Pg.279]    [Pg.463]    [Pg.87]    [Pg.3]    [Pg.70]    [Pg.188]    [Pg.185]    [Pg.26]    [Pg.364]    [Pg.530]    [Pg.712]   
See also in sourсe #XX -- [ Pg.530 , Pg.531 , Pg.532 ]

See also in sourсe #XX -- [ Pg.530 , Pg.531 , Pg.532 ]




SEARCH



Fertilizer nutrients

Plant Nutrients and Fertilizers in Soil

© 2024 chempedia.info