Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenols cresol

If the third substance dissolves in both liquids (and the solubility in each of the liquids is of the same order), the mutual solubility of the liquids will be increased and an upper C.S.T. will be lowered, as is the case when succinic acid or sodium oleate is added to the phenol - water system. A 0 083 molar solution of sodium oleate lowers the C.S.T. by 56 -7° this large effect has been applied industrially in the preparation of the disinfectant sold under the name of Lysol. Mixtures of tar acids (phenol cresols) do not mix completely with water at the ordinary temperature, but the addition of a small amount of soap ( = sodium oleate) lowers the miscibility temperature so that Lysol exists as a clear liquid at the ordinary temperature. [Pg.20]

Properties of the tar oil products are given in Table 14. The oils change only slightly with change in the retorting temperature sulfur levels are low. The fraction boiling up to 230°C contains 65 wt % of phenols, cresols, and cresyUc acids. [Pg.95]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

The principal solvents that have been used are alcohols such as ethanol, methanol, and propanol, and organic acids such as formic or acetic acid, but other solvents iaclude esters, ethers, phenols, cresols, and some amines. Even solvents such as CO2 and NH in the supercritical fluid state have been tried as solvents. [Pg.274]

When using a continuous vertical retort, phenols, cresols, and xylenols are collected in one fraction. A typical range of primary distillation fractions is given in Table 2. [Pg.339]

In the case of low temperature tar, the aqueous Hquor that accompanies the cmde tar contains between 1 and 1.5% by weight of soluble tar acids, eg, phenol, cresols, and dihydroxybenzenes. Both for the sake of economics and effluent purification, it is necessary to recover these, usually by the Lurgi Phenosolvan process based on the selective extraction of the tar acids with butyl or isobutyl acetate. The recovered phenols are separated by fractional distillation into monohydroxybenzenes, mainly phenol and cresols, and dihydroxybenzenes, mainly (9-dihydroxybenzene (catechol), methyl (9-dihydtoxybenzene, (methyl catechol), and y -dihydroxybenzene (resorcinol). The monohydric phenol fraction is added to the cmde tar acids extracted from the tar for further refining, whereas the dihydric phenol fraction is incorporated in wood-preservation creosote or sold to adhesive manufacturers. Naphthalene Oils. Naphthalene is the principal component of coke-oven tats and the only component that can be concentrated to a reasonably high content on primary distillation. Naphthalene oils from coke-oven tars distilled in a modem pipe stiU generally contain 60—65% of naphthalene. They are further upgraded by a number of methods. [Pg.340]

Most coal chemicals are obtained from high temperature tar with an average yield over 5% of the coal which is carbonized. The yields in coking are about 70% of the weight of feed coal. Tars obtained from vertical gas retorts have a much more uniform chemical composition than those from coke ovens. Two or more coals are usually blended. The conditions of carbonization vary depending on the coals used and affect the tar composition. Coal-tar chemicals include phenols, cresols, xylenols, benzene, toluene, naphthalene, and anthracene. [Pg.234]

For selective estimation of phenols pollution of environment such chromatographic methods as gas chromatography with flame-ionization detector (ISO method 8165) and high performance liquid chromatography with UV-detector (EPA method 625) is recommended. For determination of phenol, cresols, chlorophenols in environmental samples application of HPLC with amperometric detector is perspective. Phenols and chlorophenols can be easy oxidized and determined with high sensitivity on carbon-glass electrode. [Pg.129]

Skin" Notation-. The designation "skin" refers to the potential contribution to the overall exposure by the cutaneous route, including mucous membranes and eyes, either by airborne, or more particularly by direct, contact with the substance. Examples of such substances are phenol (cresol and cumene), hydrogen cyanide, and mercury. The "skin" notation is intended to make known the need to prevent cutaneous absorption so that the TLV is not violated. [Pg.258]

Cresylic acid is a commercial mixture of phenolic compounds including phenol, cresols, and xylenols. This mixture varies widely according to its source. Properties of phenol, cresols, and xylenols are shown in Table 4-5 Cresylic acid constitutes part of the oxygen compounds found in crudes that are concentrated in the naphtha fraction obtained principally from naphthenic and asphaltic-based crudes. Phenolic compounds, which are weak acids, are extracted with relatively strong aqueous caustic solutions. [Pg.131]

Polyamides (nylons) The main types of nylon are oil and petrol resistant, but on the other hand susceptible to high water absorption and to hydrolysis. There are a few solvents such as phenol, cresol and formic acid. Special grades include a water-soluble nylon, amorphous copolymers and low molecular weight grades used in conjunction with epoxide resins. Transparent amorphous polyamides are also now available. [Pg.933]

Many of the phenols which are used in household and other commercial disinfectant products are produeed from the tar obtained by distillation of coal or more recently petroleum. They are known as the tar acids. These phenols are separated by fractional distillation according to their boiling point range into phenol, cresols, xylenols and high boiling point tar acids. As the boiling point increases the properties of the products alter as shown ... [Pg.223]

The antimicrobial agent is diluted in the culture medium to a level at which it ceases to have any activity, for example phenols, cresols and alcohols (see Chapter 11). This method applies to substances with a high dilution coefficient, r. ... [Pg.449]

A number of examples have been cited by Chakrabarti and Sharma (1993) and Sharma (1995). The example of etherification of phenols, substituted phenols, cresols, naphthols, etc., with isobutylene and isoamylene may be empahsized where homogeneous catalysts lead to... [Pg.128]

O-Alkylation of phenols Phenol/cresols/catechols, alkyl halides/dimethyl sulphate/diethyl sulphate... [Pg.146]

Triphenyl/Tricresyl phosphate Phenol/cresols, POCI3... [Pg.146]

In addition to the Fischer-Tropsch-derived material, coal-derived liquids were also recovered from low-temperature coal gasification (not shown in Figures 18.3 and 18.4). These products were processed separately to produce chemicals, such as phenols, cresols, and ammonia, as well as an aromatic motor gasoline blending stock.34 The latter was mixed with the Fischer-Tropsch-derived motor gasoline. [Pg.343]

Boyd [148] determined ppq levels of phenols, cresols, and catechols in San Diego Bay (CA, USA) water by aqueous acetylation of the sample followed by gas chromatography-mass spectrometry. [Pg.396]

The selective hydroxylation, in the presence of aqueous H2O2, of aromatic hydrocarbons such as benzene, toluene, and xylene to phenol, cresols, and xylenols, respectively, occurs easily on TS-1 (33,165,224). Again, a significant contrast between TS-2 and VS-2 in the oxidation of toluene is that when the catalyst is the former, only aromatic ring hydroxylation takes place, although when the catalyst is VS-2, the side chain C-H bonds are also hydroxylated (165, 218,219,225,226) (Table XXVIII). [Pg.111]

Experiments.—To an ice-cooled solution of 2-3 g. of a phenol (phenol, cresol, /3-naphthol, salicylaldehyde, quinol) in a little ether, acetone, or methyl alcohol, the diazomethane solution prepared as described above is added in small portions until evolution of gas no longer takes place and the solution is coloured faintly yellow. [Pg.273]

Musculoskeletal Effects. A case of muscle pain and weakness was described in an individual after intermittent chronic inhalation and dermal exposure to vapors and solutions of phenol, cresol, and xylenol (Merliss 1972). The symptoms lessened when the subject was removed from exposure. [Pg.46]

Nieminen E, Heikkila P. 1986. Simultaneous determination of phenol, cresols and xylenols in workplace air, using a polystyrene-divinylbenzene column and electrochemical detection. J Chromatogr 360 271-278. [Pg.221]

Antioxidant. Substances that retard or inhibit autoxidation at moderate temperatures and pressures. Commonly Icnown, commercial antioxidants are aromatic amines, alkylated phenols, cresols, and hydroquinones. [Pg.391]

Chemical/Physical. Kanno et al. (1982) studied the aqueous reaction of 1-naphthylamine and other substituted aromatic hydrocarbons (aniline, toluidine, 2-naphthylamine, phenol, cresol, pyrocatechol, resorcinol, hydroquinone, and 1-naphthol) with hypochlorous acid in the presence of ammonium ion. They reported that the aromatic ring was not chlorinated as expected but was cleaved by chloramine forming cyanogen chloride. The amount of cyanogen chloride that formed increased as the pH was lowered (Kanno et al., 1982). [Pg.829]

Andon, R.J.E., Biddiscombe, D.P., Cox, F.D., Handley, R., Harrop, D., Herington, E.F.G., and Martin, J.F. Thermodynamic properties of organic oxygen compounds. Part 1. Preparation of physical properties of pure phenol, cresols and xylenols, J. [Pg.1625]

Atkinson, R., Ashmann, S.M., and Arey, J. Reactions of OH and NO3 radicals with phenol, cresols, and 2-nitrophenol at 296 ... [Pg.1627]


See other pages where Phenols cresol is mentioned: [Pg.335]    [Pg.170]    [Pg.370]    [Pg.126]    [Pg.645]    [Pg.654]    [Pg.506]    [Pg.452]    [Pg.17]    [Pg.132]    [Pg.419]    [Pg.448]    [Pg.506]    [Pg.667]    [Pg.329]    [Pg.330]    [Pg.103]    [Pg.237]    [Pg.48]    [Pg.107]    [Pg.656]    [Pg.1675]   
See also in sourсe #XX -- [ Pg.826 ]

See also in sourсe #XX -- [ Pg.434 ]




SEARCH



Cresolic

Cresols

Cresols dimethyl phenols

Epoxy cresol/phenol

Novolac cresol/phenol

Novolac resin, bisphenol Cresol, phenol

Phenol, Cresols and Other Alkyl Phenols

© 2024 chempedia.info