Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase monotropic

Cr, crystalline phase SmA, smectic A phase Monotropic mesophase. SmX, unidentified smectic phase 1, isotropic liquid. ... [Pg.41]

Mesophases may be enantiotropic or monotropic. While enantiotropic mesophases are stable and exist above the melting temperature of the crystalline phase, monotropic mesophases are metastable and occur below the melting point of the crystalline lipid. Thus, they are formed upon cooling the isotropic melt. [Pg.478]

Colho = columnar hexagcmal ordered phase, = monotropic transition, observed by polarising mio-oscopy on cooling 2,4,7-trinitrofluorenone (TNF, 5a), 6 chiral (->2-(2,4,5,7-tetranitro-9-fluorenylideneaminooxy)propionic acid ((-)-TAPA, 5b, commwcially available) or (2,4,7-trinitro-9-fluorenylidene)malonic bidiexadecylester (5c) [18]. The transition temperatures of this doncx Nd phase are given in TABLE 3. Here, due to the diind TAPA an induced chiral nonatic phase. [Pg.61]

The positional order of the molecules within the smectic layers disappears when the smectic B phase is heated to the smectic A phase. Likewise, the one-dimensional positional order of the smectic M phase is lost in the transition to the nematic phase. AH of the transitions given in this example are reversible upon heating and cooling they are therefore enantiotropic. When a given Hquid crystal phase can only be obtained by changing the temperature in one direction (ie, the mesophase occurs below the soHd to isotropic Hquid transition due to supercooling), then it is monotropic. An example of this is the smectic A phase of cholesteryl nonanoate [1182-66-7] (4), which occurs only if the chiral nematic phase is cooled (21). The transitions are aH reversible as long as crystals of the soHd phase do not form. [Pg.197]

The different phase behaviors are evidenced in the corresponding free energy diagrams, which have been estimated for both polymers [15]. These diagrams are shown in Fig. 10 (due to the different approximations used in the calculation of the free energy differences, these diagrams are only semiquantitative [15]). It can be seen that the monotropic transition of the crystal in... [Pg.388]

The presence of three oxyethylene units in the spacer of PTEB slows down the crystallization from the meso-phase, which is a very rapid process in the analogous polybibenzoate with an all-methylene spacer, P8MB [13]. Other effects of the presence of ether groups in the spacer are the change from a monotropic behavior in P8MB to an enantiotropic one in PTEB, as well as the reduction in the glass transition temperature. This rather interesting behavior led us to perform a detailed study of the dynamic mechanical properties of copolymers of these two poly bibenzoates [41]. [Pg.396]

In some cases, chemical substituents can bring about unusual monotropic liquid crystalline phases which only exist upon heating or cooling. The diphenyl-diacetylenes are examples in this category [22]. Early theoretical connections between molecular electronic structure and orientational order... [Pg.8]

The first report on the liquid crystalline properties of these compounds was published by Gray and Mosley [44] in 1976. The series of 4 -n-alkyl-4-cyanobiphenyls (CBn) have been widely studied by different methods due to their readily accessible nematic ranges around room temperature. The compounds have the phase sequences crystal-nematic-isotropic for CBS, CBIO, and monotropic nematic for CBS, CB4 crystal-smectic A-nematic-isotropic for CB9 crystal-smectic A-isotropic for CBll. The lower homologous CB2 is nonmesogenic. The general chemical structure of the compounds CBn is presented in Fig. 1. [Pg.142]

In this section, we will describe the crystal structures of the mesogenic A -n-alkoxy-4-cyano-biphenyls (Fig. 1) [53-57]. The compounds have the phase sequences crystal-nematic-isotropic for CB05—CB07 and monotropic nematic for CB01-CB04 crystal-smectic A-nematic-isotropic for CB08. The crystal and molecular data of the investigated compounds CBOn are summarised in Table 2. [Pg.145]

Hartung and Rapthel [64] described the crystal structure of the mesogenic 2-methylthio-5-(4 -n-butyloxyphenyl)-pyrimidine which forms a monotropic smectic A phase. The chemical structure of this compound is presented in Fig. 5. The compound crystallises in the triclinic space group PI with two molecules per unit cell. The molecules adopt a fully stretched and nearly planar form. The pyrimidine ring is nearly planar. The dihedral angle between the phenyl and the pyrimidine rings is 22.7°. The molecules are arranged parallel to each other. [Pg.150]

In this section we will report on the crystal structure analyses of mesogenic 2,5-diphenyl pyrimidines. The crystal structure of 5-phenyl-2-(4 -n-butoxy-phenyl)-pyrimidine (5-PBuPP) and 2-phenyl-5-(4 -n-pentoxyphenyl)-pyrimi-dine (2-PPePP) were determined by Winter et al. [83, 84]. Compound 5-PBuPP forms a monotropic nematic phase, whereas compound 2-PPePP exhibits a smectic A mesophase within a wide temperature range. The chemical structure of the mesogenic 2,5-diphenyl pyrimidines is shown in Fig. 13. [Pg.159]

Hartung et al. [102] described the crystal structure of 4 -(/i-cyanoethyl)-phenyl-4- -pentoxybenzoate which exhibits a monotropic nematic phase. The crystal structure of the compound shows a parallel arrangement of the molecules. [Pg.169]

Zareba et al. [165] described the crystal structure of the chiral 4-(l-methyl-heptyloxycarbonyl)-phenyl 4-heptyloxytolane-4 -carboxylate (C7-tolane) which shows monotropic antiferroelectric and ferroelectric phases. The single-crystal X-ray analysis of this compound shows that the crystal has a smectic-like layer structure composed of largely bent molecules where the chain of the chiral group is almost perpendicular (86°) to the core moiety. Within the layers, the molecules are tilted. The central tolane group of the molecule is roughly planar. [Pg.189]

Most solid materials produce isotropic liquids directly upon melting. However, in some cases one or more intermediate phases are formed (called mesophases), where the material retains some ordered structure but already shows the mobility characteristic of a liquid. These materials are liquid crystal (LCs)(or mesogens) of the thermotropic type, and can display several transitions between phases at different temperatures crystal-crystal transition (between solid phases), melting point (solid to first mesophase transition), mesophase-mesophase transition (when several mesophases exist), and clearing point (last mesophase to isotropic liquid transition) [1]. Often the transitions are observed both upon heating and on cooling (enantiotropic transitions), but sometimes they appear only upon cooling (monotropic transitions). [Pg.357]

Derivatives of aliphatic alkynes (14 and 15) are more thermally unstable than 12, but they show SmA and N phases at low temperatures (below 130 °C). The type of phase and the mesophase stability depend on the length of both the terminal and the lateral chains. When both chains are elongated, the mesomorphism becomes metastable and compounds 14 display monotropic N and SmA transitions. Complexes IS, which contains an ester group with an opposite direction to that of complexes 14, display less stable nematic mesophases. [Pg.371]

The introduction of a second chiral atom in the system leads to a reduction in the mesogenic properties and only a monotropic chiral nematic transition is observed for compound 23. However, when this compound is cooled down from the isotropic liquid state at a cooling rate of 0.5 °Cmin , very unusual blue phases BP-III, BL-II and BP-I are observed in the range 103-88 °C. Blue phases usually require pitch values below 500 nm. Hence the pitch value of the cholesteric phase for 23 must be very short, suggesting that the packing of two chiral carbons forces a faster helical shift for successive molecules packed along the perpendicular to the director. [Pg.377]

The liquid crystal properties of the complexes were characterised using polarised optical microscopy and showed a nematic phase for n = 4 and 6 and a SmA phase for n = 6, 8, 10 and 12. The mesophases were monotropic for n = 4 and 6 and enantiotropic for the others the progression from a nematic phase for shorter chain lengths to SmA at longer chain lengths is quite typical for simple, polar mesogens. [Pg.185]

The complexes studied had n = 8,10 and 12 and m = 2 and 3. With the exception of the complex with n = 10 and m = 3, all complexes showed a nematic phase which, in all cases, was monotropic. Thus, melting points were in the range 95 to 108 °C, with clearing points between 90 and 104 °C. [Pg.186]

Examination of the thermal behaviour showed that with three exceptions, all complexes showed a monotropic SmA phase with in almost all cases, melting being observed between 88 and 99 °C, with clearing between 82 and 89 °C. Of the three exceptions, 15-6,8 and 15-8,10 showed no liquid crystal phase at all, while 15-12,6 showed an additional monotropic nematic phase. A curious feature of these complexes is the apparent insensitivity of the melting and clearing points to both n and m. [Pg.187]

Polymers formed between a and c, d and e all failed to show any liquid-crystalline behaviour. However, for all a examined (m = 2,4,6 and 8), nematic phases were observed with b-4 (all monotropic) - a further monotropic nematic material was the copolymer of a-6 and b-3. Unidentified crystal smectic mesophases were reported for a further three examples. [Pg.189]

If a modification is unstable at every temperature and every pressure, then its conversion into another modification is irreversible such phase transitions are called monotropic. Enantiotropic phase transitions are reversible they proceed under equilibrium conditions (AG = 0). The following considerations are valid for enantiotropic phase transitions that are induced by a variation of temperature or pressure. [Pg.32]

The square-planar complex (383) shows a monotropic smectic A-phase, and the X-ray diffraction study of the yellow form shows that the whole molecule adopts an extended rod-like shape with an all-trans conformation of the decycloxy chain.616... [Pg.218]

Apart from the parent compound 1 and its very simple alkyl derivatives, 1,3,4-oxadiazoles are solids. Solid oxadiazoles containing biphenyl or triphenyl substituents exhibit interesting properties upon heating. The symmetric 2,5-bisbiphenyl-4-yl-l,3,4-oxadiazole 38 melts into an isotropic phase showing small monotropic mesophase. By contrast, the asymmetric (hockey stick-shaped) mesogen 2-terphenyl-4-yl-5-phenyl-l,3,4-oxadiazole 39 exhibits a more stable enantiotropic liquid crystalline phase (a smectic phase as well as a nematic phase) <2001PCB8845>. [Pg.406]

Based on the reversibility of their phase transformation behavior, polymorphs can easily be classified as being either enantiotropic (interchange reversibly with temperature) or monotropic (irreversible phase transformation). Enantiotropic polymorphs are each characterized by phase stability over well-defined temperature ranges. In the monotropic system, one polymorph will be stable at all temperatures, and the other is only metastable. Ostwald formulated the rule of successive reactions, which states that the phase that will crystallize out of a melt will be the state that can be reached with the minimum loss of free... [Pg.138]

On heating from a crystalline phase, DOBAMBC melts to form a SmC phase, which exists as the thermodynamic minimum structure between 76 and 95°C. At 95°C a thermotropic transition to the SmA phase occurs. Finally, the system clears to the isotropic liquid phase at 117°C. On cooling, the SmC phase supercools into the temperature range where the crystalline solid is more stable (a common occurrence). In fact, at 63°C a new smectic phase (the SmF) appears. This phase is metastable with respect to the crystalline solid such phases are termed monotropic, while thermodynamically stable phases are termed enantiotropic. The kinetic stability of monotropic LC phases is dependent upon purity of the sample and other conditions such as the cooling rate. However, the appearance of monotropic phases is typically reproducible and is often reported in the phase sequence on cooling. It is assumed that phases appearing on heating a sample are enantiotropic. [Pg.466]

Monoterpenoid ketones, 24 536-541 Monoterpenoids, 24 468, 470, 472, 484-541 Monothiocarboxylic acids, 23 739 Monotropic phase transitions, 15 101 Monounsaturated fatty acids, 10 830 Monounsaturated olefins, hydrogenation of, 26 879-880 Monovinylacetylene, 1 230 Monsanto acetic acid process, 19 646 Monsanto adiponitrile process, 17 236 Monsanto aluminum chloride-based Alkylation process, 23 333 Monsanto Prism separator, 16 21 Monsanto process (Lummus-UOP Classic process), 16 74 23 339, 341 Monsanto-Washington University collaboration, 24 390, 400-401 Montanic acid... [Pg.602]

When a solid system undergoing a thermal change in phase exhibits a reversible transition point at some temperature below the melting points of either of the polymorphic forms of the solid, the system is described as exhibiting enantiotropic polymorphism, or enantiotropy. On the other hand, when a solid system undergoing thermal change is characterized by the existence of only one stable form over the entire temperature range, then the system is said to display monotropic polymorphism, or monotropy. [Pg.91]

An example of monotropic behavior consists of the system formed by anhydrous ibuprofen lysinate [41,42], Figure 4.12 shows the DSC thermogram of this compound over the temperature range of 20-200°C, where two different endothermic transitions were noted for the substance (one at 63.7°C and the other at 180.1°C). A second cyclical DSC scan from 25 to 75°C demonstrated that the 64°C endotherm, generated on heating, had a complementary 62°C exotherm, formed on cooling (see Fig. 4.13). The superimposable character of the traces in the thermograms demonstrates that both these processes were reversible, and indicates that the observed transition is associated with an enantiotropic phase interconversion [41]. X-ray powder (XRPD) diffraction patterns acquired at room temperature, 70°C, and... [Pg.91]

It is worth noting that a monotropic polymorphic system offers the potential of annealing the substance to achieve the preferred form of the thermodynamically stable phase. The use of the most stable form is ordinarily preferred to avoid the inexorable tendency of a metastable system to move toward the thermodynamic form. This is especially important especially if someone elects to use a metastable phase of an excipient as part of a tablet coating, since physical changes in the properties of the coating can take place after it has been made. Use of the most stable form avoids any solid-solid transition that could... [Pg.93]


See other pages where Phase monotropic is mentioned: [Pg.227]    [Pg.246]    [Pg.258]    [Pg.262]    [Pg.199]    [Pg.451]    [Pg.522]    [Pg.59]    [Pg.77]    [Pg.56]    [Pg.227]    [Pg.246]    [Pg.258]    [Pg.262]    [Pg.199]    [Pg.451]    [Pg.522]    [Pg.59]    [Pg.77]    [Pg.56]    [Pg.384]    [Pg.148]    [Pg.154]    [Pg.155]    [Pg.155]    [Pg.376]    [Pg.187]    [Pg.264]    [Pg.115]    [Pg.600]   
See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Monotropes

Monotropic phase transition

Monotropism

© 2024 chempedia.info