Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase formation, kinetics

Phase formation kinetics based on surface diffusion-controlled growth processes have been suggested for 2D monolayers of camphor-lO-sulfonate on mercury [182], physisorbed uracil films on Au(hkl) [183], as well as the commensu-rate/incommensurate transition c( 2 x 2y2)R45 c(p X 2y2)R45° of bromide on Au(lOO) [51]. [Pg.398]

Product formation kinetics in mammalian cells has been studied extensively for hybridomas. Most monoclonal antibodies are produced at an enhanced rate during the Gq phase of the cell cycle (8—10). A model for antibody production based on this cell cycle dependence and traditional Monod kinetics for cell growth has been proposed (11). However, it is not clear if this cell cycle dependence carries over to recombinant CHO cells. In fact it has been reported that dihydrofolate reductase, the gene for which is co-amplified with the gene for the recombinant protein in CHO cells, synthesis is associated with the S phase of the cell cycle (12). Hence it is possible that the product formation kinetics in recombinant CHO cells is different from that of hybridomas. [Pg.230]

The combination of non-ideal phase behaviour of solutions, the non-linearity of particle formation kinetics, the multi-dimensionality of crystals, their interactions and difficulties of modelling, instrumentation and measurement have conspired to make crystallizer control a formidable engineering challenge. Various aspects of achieving control of crystallizers have been reviewed by Rawlings etal. (1993) and Rohani (2001), respectively. [Pg.287]

Fig. 13. Arrhenius plots of the kinetics of H atom recombination on a Ni77Cu23 alloy film catalyst. Above room temperature—active NiCu film with low activation energy. Below room temperature—film deactivated owing to a 0-hydride phase formation activation energy markedly increased. After Karpinski el al. (65). Fig. 13. Arrhenius plots of the kinetics of H atom recombination on a Ni77Cu23 alloy film catalyst. Above room temperature—active NiCu film with low activation energy. Below room temperature—film deactivated owing to a 0-hydride phase formation activation energy markedly increased. After Karpinski el al. (65).
It was found that the region of formation of the chalcogenide halides depends on the pH, the solvent concentration, and the ratios of the initial components in the charge. Temperature and pressure have practically no influence on the phase formation in these systems (285). The use of bromine (283) and SeBr2 as the solvent leads to a different mechanism, having different kinetics of formation and different growth-forms of the crystals (285). [Pg.406]

In searching to formulate a mechanism of CuInSc2 phase formation by one-step electrodeposition from acid (pH 1-3) aqueous solutions containing millimolar concentrations of selenous acid and indium and copper sulfates, Kois et al. [178] considered a number of consecutive reactions involving the formation of Se, CuSe, and Cu2Se phases as a pre-requisite for the formation of CIS (Table 3.2). Thermodynamic and kinetic analyses on this basis were used to calculate a potential-pH diagram (Fig. 3.10) for the aqueous Cu+In-i-Se system and construct a distribution diagram of the final products in terms of deposition potential and composition ratio of Se(lV)/Cu(ll) in solution. [Pg.117]

Oudar and co-workers studied the dissociative chemisorption of hydrogen sulfide at Cu(110) surfaces between 1968 and 1971.3,14 As in the case of Ni(110) described below, a series of structures were identified, which in order of increasing sulfur coverage were described as c(2 x 2), p(5 x 2) and p(3 x 2). In contrast to nickel, the formation of the latter phase is kinetically very slow from the decomposition of H2S and could only be produced at high temperatures and pressures. The c(2 x 2) and p(5 x 2) structures were confirmed by LEED,15 17 but the p(3 x 2) phase has not been observed by H2S adsorption since Oudar and colleagues work. [Pg.182]

The maximum rise of number of mobile dislocations in the deformed materials occurs in the range of 10-20 % [9, 10]. Such processes influence on kinetic of phase formation that results in the accelerated growth of s- and y-nitrides and in increase of microhardness of the surface diffusion layers. [Pg.495]

The acid-catalysed hydrolysis of the acylal, 1-phenoxyethyl propionate (13), has been studied using the PM3 method in the gas phase. The kinetics and mechanism of the hydrolysis of tetrahydro-2-furyl and tetrahydropyran-2-yl alkanoates (14) in water and water-20% ethanol have been reported. In acidic and neutral media, kinetics, activation parameters, isotope-exchange studies, substituent effects, solvent effects and the lack of buffer catalysis pointed clearly to an Aai-1 mechanism with formation of the tetrahydro-2-furyl or tetrahydropyran-2-yl carbocation as the rate-limiting step (Scheme 1). There is no evidence of a base-promoted Bac2 mechanism up to pH 12. ... [Pg.38]

The amount of modifier required to prevent third phase formation can be determined in the following way. The aqueous and solvent phases are first contacted, and once the three phases have separated, the lower aqueous phase is drawn off and discarded. The modifier to be considered is then added from a burette in small increments to the two organic phases, and the mixture shaken after each addition. The amount of modifier required to produce a single organic phase is then used to calculate the amount required to be added to the solvent. Generally, about 2-5 vol% of modifier is needed, but more may be necessary if high concentrations of extractant are used in the solvent. Any effects of modifiers on the kinetics and equilibria of metal extraction and stripping can be determined by shakeout tests. [Pg.293]

Addition of anions to NaOH solution affects the anodic film formation kinetics and morphology. These films are mainly a-PbO, with the exception of chloride ions solution, where 8-PbO is formed [157]. Tknodic oxidation of Pb electrode in hot alkaKne solution (containing NaOH) facilitates selective growth of a-PbO, /3-PbO, and Pb02- (x = 0-1) phases, depending... [Pg.813]

In discussing the mechanisms of the formation of monodispersed colloids by precipitation in homogeneous solutions, it is necessary to consider both the chemical and physical aspects of the processes involved. The former require information on the composition of all species in solution, and especially of those that directly lead to the solid phase formation, while the latter deal with the nucleation, particle growth, and/or aggregation stages of the systems under investigation. In both instances, the kinetics of these processes play an essential role in defining the properties of the final products. [Pg.7]

A review article on the CVD processes used to form SiC and Si3N4 by one of the pioneers in this area, Erich Fitzer [Fitzer, E., and D. Hegen, Chemical vapor deposition of silicon carbide and silicon nitride—Chemistry s contribution to modem silicon ceramics, Angew. Chem. Int. Ed. Engl, 18, 295 (1979)], describes the reaction kinetics of the gas-phase formation of these two technical ceramics in various reactor arrangements (hot wall, cold... [Pg.283]

Ultraviolet radiation, 797 Undeipotential deposition, 1121, 1313 alloy formation during, 1316 causes of, 1315 definition, 1313 displacement potential, 1316 kinetics of, 1316 lead deposition, 1313 one-dimensional phase formation in, 1316 scanning tunneling microscopy used to study, 1313, 1315... [Pg.52]

The kinetics by which UPD layers form are qualitatively the processes already discussed. There are the electron transfer kinetics from the metal substrate to the depositing ion and the surface diffusion of the adions formed to edge sites on terraces. Complications occur, however, for there is the adsorption of ions to take care of and that brings up questions of which isotherm to use (Section 6.8). Three kinds of UPD formations are shown in Fig. 7.146. Thus Fig. 7.146 (c) shows ID phase formation along a monatomic step in the terraces on the single ciystal Fig. 7.146 (b) shows 2D nucleation at a step, and Fig. 7.146 (a) shows 2D nucleation on an atomically flat plane. [Pg.599]


See other pages where Phase formation, kinetics is mentioned: [Pg.41]    [Pg.109]    [Pg.278]    [Pg.109]    [Pg.400]    [Pg.388]    [Pg.465]    [Pg.278]    [Pg.41]    [Pg.109]    [Pg.278]    [Pg.109]    [Pg.400]    [Pg.388]    [Pg.465]    [Pg.278]    [Pg.493]    [Pg.253]    [Pg.238]    [Pg.455]    [Pg.124]    [Pg.313]    [Pg.314]    [Pg.2]    [Pg.8]    [Pg.220]    [Pg.748]    [Pg.749]    [Pg.234]    [Pg.212]    [Pg.215]    [Pg.587]    [Pg.429]    [Pg.432]    [Pg.440]    [Pg.100]    [Pg.321]    [Pg.255]    [Pg.265]    [Pg.139]   


SEARCH



Formation kinetic

Phase formation

Phase kinetic

© 2024 chempedia.info