Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pharmaceutical analysis techniques

As HPLC is the most widely used pharmaceutical analysis technique among current chromatographic methods, a short comparison of HPLC and CE should be very informative to the reader. Some comparisons will also be made to GC. This section will illustrate the advantages, disadvantages, and complementary natures of HPLC and CE. [Pg.167]

In addition to general scientific meetings which contain papers involving LC-MS, the Annual Montreux Meeting, held since 1980, is a meeting devoted to LC-MS, CE-MS and MS-MS which deals with technical developments in on-line aspects, theoretical considerations, and applications of the techniques in enviromnental, clinical, industrial and pharmaceutical analysis, and other fields. Recent advances... [Pg.301]

In pharmaceutical analysis the detection of impurities under a chromatographic peak is a major issue. An important step forward in the assessment of peak purity was the introduction of hyphenated techniques. When selecting a method to perform a purity check, one has the choice between a global method which considers a whole peak cluster (from the start to the end of the peak), and evolutionary methods, which consider a window of the peak cluster, which is... [Pg.301]

Other reviews of multidimensional separations have been published. These include a book on polymer characterization by hyphenated and multidimensional techniques (Provder et al., 1995), a review on polymer analysis by 2DLC (van der Horst and Schoenmakers, 2003), and two reviews on two-dimensional techniques in peptide and protein separations (Issaq et al., 2005 Stroink et al., 2005). Reviews on multidimensional separations in biomedical and pharmaceutical analysis (Dixon et al. 2006) and multidimensional column selectivity (Jandera, 2006) were recently published. Suggested nomenclature and conventions for comprehensive multidimensional chromatography were published in 2003 (Schoenmakers et al., 2003), and a book chapter in the Advances in Chromatography series on MDLC was published in 2006 (Shalliker and Gray 2006). [Pg.5]

Separation-based techniques, especially high-performance liquid chromatography (HPLC) and gas chromatography (GC), have long been the work horses of pharmaceutical analysis laboratories. They are among the most powerful and versatile tools for the detection and quantitation of analytes (chemical components) in complex matrices frequently encountered in the course of PhR D. [Pg.249]

Modern spectroscopy plays an important role in pharmaceutical analysis. Historically, spectroscopic techniques such as infrared (IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used primarily for characterization of drug substances and structure elucidation of synthetic impurities and degradation products. Because of the limitation in specificity (spectral and chemical interference) and sensitivity, spectroscopy alone has assumed a much less important role than chromatographic techniques in quantitative analytical applications. However, spectroscopy offers the significant advantages of simple sample preparation and expeditious operation. [Pg.265]

Although considered a basic technique, ultraviolet-visible (UV-vis) is perhaps the most widely used spectrophotometric technique for the quantitative analysis of pure chemical substances such as APIs in pharmaceutical analysis. For pharmaceutical dosage forms that do not present significant matrix interference, quantitative UV-vis measurements may also be made directly.114,115 It is estimated that UV-vis-based methods account for 10% of pharmacopoeia assays of drug substances and formulated products.116... [Pg.265]

Vukjovic et al.199 recently proposed a simple, fast, sensitive, and low-cost procedure based on solid phase spectrophotometric (SPS) and multicomponent analysis by multiple linear regression (MA) to determine traces of heavy metals in pharmaceuticals. Other spectroscopic techniques employed for high-throughput pharmaceutical analysis include laser-induced breakdown spectroscopy (LIBS),200 201 fluorescence spectroscopy,202 204 diffusive reflectance spectroscopy,205 laser-based nephelometry,206 automated polarized light microscopy,207 and laser diffraction and image analysis.208... [Pg.269]

Many other selective techniques such as MS, FT-IR, ICP-MS, and electrochemical detection have also been used and several reviews of FIA applications in pharmaceutical analysis appear in the literature.214-216 Several articles are dedicated to pharmaceutical analysis using SIA.217218 FIA and SIA have been applied to high-throughput analysis (up to 200 samples per hour with good... [Pg.269]

Most workers in the pharmaceutical field identify thermal analysis with the melting point, DTA, DSC, and TG methods just described. Growing in interest are other techniques available for the characterization of solid materials, each of which can be particularly useful to deduce certain types of information. Although it is beyond the scope of this chapter to delve into each type of methodology in great detail, it is worth providing short summaries of these. As in all thermal analysis techniques, the observed parameter of interest is obtained as a function of temperature, while the sample is heated at an accurately controlled rate. [Pg.114]

Therefore, the application of skill and wisdom may give rise to a fairly wide spectrum of possible layers, employed in conjunction with a vast combination of solvent systems permits and affords an almost infinite variation of separating power that really makes TLC such a versatile and useful technique in the domain of pharmaceutical analysis. [Pg.410]

The technique of thin-layer chromatography (TLC) has been used extensively in the domain of pharmaceutical analysis for a variety of specific and useful applications, for example ... [Pg.425]

The thirty-two different chapters meticulously divided into six parts invariably covers up analytical techniques being used in most of the Official Compendia. Each chapter categorically and explicitly deals with the introduction, theoretical aspect(s), instrumentation, typical examples of pharmaceutical analysis and cognate assays. [Pg.537]

Part—I has three chapters that exclusively deal with General Aspects of pharmaceutical analysis. Chapter 1 focuses on the pharmaceutical chemicals and their respective purity and management. Critical information with regard to description of the finished product, sampling procedures, bioavailability, identification tests, physical constants and miscellaneous characteristics, such as ash values, loss on drying, clarity and color of solution, specific tests, limit tests of metallic and non-metallic impurities, limits of moisture content, volatile and non-volatile matter and lastly residue on ignition have also been dealt with. Each section provides adequate procedural details supported by ample typical examples from the Official Compendia. Chapter 2 embraces the theory and technique of quantitative analysis with specific emphasis on volumetric analysis, volumetric apparatus, their specifications, standardization and utility. It also includes biomedical analytical chemistry, colorimetric assays, theory and assay of biochemicals, such as urea, bilirubin, cholesterol and enzymatic assays, such as alkaline phosphatase, lactate dehydrogenase, salient features of radioimmunoassay and automated methods of chemical analysis. Chapter 3 provides special emphasis on errors in pharmaceutical analysis and their statistical validation. The first aspect is related to errors in pharmaceutical analysis and embodies classification of errors, accuracy, precision and makes... [Pg.539]

Part—VI has been solely devoted to Miscellaneous Assay Methods wherein radioimmunoassay (RIA) (Chapter 32) has been discussed extensively. Various arms of theoretical aspects viz., hapten determinants and purity importance of antigenic determinants and analysis of competitive antibody binding of isotopically labeled compounds. The applications of RIA in pharmaceutical analysis, such as morphine, hydromorphone and hydrocordone in human plasma clonazepam, flurazepam in human plasma chlordiazepoxide in plasma barbiturates, flunisolide in human plasma have been described elaborately. Lastly, the novel applications of RIA-techniques, combined RIA-technique-isotope dilution and stereospecificity have also been included to highlight the importance of RIA in the analytical armamentarium. [Pg.542]

Sample preparation (SP) is generally not given adequate attention in discussions of pharmaceutical analysis even though its proper execution is of paramount importance in achieving fast and accurate quantification (see Chapter 5). Non-robust SP procedures, poor techniques, or incomplete extraction are the major causes of out-of-trend and out-of-specification results. The common SP techniques have been reviewed with a strong focus on tablets or capsules, as they are the primary products of the pharmaceutical industry. Detailed descriptions of SP methods for assays and impurity testing are provided with selected case studies of single- and multi-component products. [Pg.4]

Chiral separation of drng molecules and of their precursors, in the case of synthesis of enantiomerically pure drugs, is one of the important application areas of HPLC in pharmaceutical analysis. Besides HPLC, capillary electrophoresis (CE) is another technique of choice for chiral separations. Chapter 18 provides an overview of the different modes (e.g., direct and indirect ones) of obtaining a chiral separation in HPLC and CE. The direct approaches, i.e., those where the compound of interest is not derivatized prior to separation, are discussed in more detail since they are cnrrently the most frequently used techniques. These approaches require the use of the so-called chiral selectors to enable enantioselective recognition and enantiomeric separation. Many different molecnles have been nsed as chiral selectors, both in HPLC and CE. They can be classified into three different groups, based on their... [Pg.12]

As stated earlier, the SP trend in the pharmaceutical analysis of solid dosage forms is dominated by manual batch techniques such as grinding, sonication, dilution in volumetric flask and filtration. The unique SP requirements for solid dosages in grinding and handling large volumetries are particularly difficult to automate. [Pg.134]

This chapter reviews the myriad SP techniques used in pharmaceutical analysis and focuses discussion on those commonly used for pharmaceutical products, such as grinding, mixing, sonication, dilution and filtration. The best practices and technical judgments used in developing SP procedures are illustrated with several case studies of assays and impurity testing. [Pg.142]


See other pages where Pharmaceutical analysis techniques is mentioned: [Pg.61]    [Pg.438]    [Pg.433]    [Pg.104]    [Pg.70]    [Pg.425]    [Pg.431]    [Pg.249]    [Pg.262]    [Pg.263]    [Pg.263]    [Pg.264]    [Pg.264]    [Pg.266]    [Pg.267]    [Pg.268]    [Pg.270]    [Pg.270]    [Pg.272]    [Pg.273]    [Pg.273]    [Pg.541]    [Pg.541]    [Pg.44]    [Pg.38]    [Pg.4]    [Pg.14]    [Pg.20]    [Pg.451]    [Pg.501]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Analysis techniques

Chiral pharmaceutical analysis techniques

Pharmaceutical analysis pharmaceuticals

© 2024 chempedia.info