Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Penetrant of diffusion

Short-time" solution for diffusion into a cylinder (a) near-surface penetration of diffusing species and (b) unfolding of near-surface region into a semi-infinite strip. [Pg.167]

In general, the foUowing steps can occur in an overall Hquid—soHd extraction process solvent transfer from the bulk of the solution to the surface of the soHd penetration or diffusion of the solvent into the pores of the soHd dissolution of the solvent into the solute solute diffusion to the surface of the particle and solute transfer to the bulk of the solution. The various fundamental mechanisms and processes involved in these steps make it impracticable or impossible to describe leaching by any rigorous theory. [Pg.87]

Absorption. Some inks (eg, oil-based newspaper inks) dry by penetration or absorption into the pores of the printed stock, which has a blotter or sponge effect. This is accompHshed by the gross penetration of the ink vehicle into the pores of the substrate, the partial separation of the vehicle from the pigment, and the diffusion of the vehicle throughout the paper. The abiHty of an ink to penetrate into paper depends on the number and size of the air spaces present in the paper, the affinity or receptivity of the stock for the ink, and the mobiHty of the ink. [Pg.247]

Exxon products appear to release via a unique mechanism. Like other polymer-coated technologies, the penetration of water iato the granule is purely by diffusion. However, as water enters the particle, an osmotic pressure is created as the fertilizer is solubilized. This pressure causes an expansion of the elastomeric coating and the particle swells to many times its original diameter. As the particle swells, the coating becomes increasingly thinner to the point where it caimot contain the internal pressure and the nutrient is released. [Pg.137]

Penetration theoiy often is used in analyzing absorption with chemical reaction because it makes no assumption about the depths of penetration of the various reacting species, and it gives a more accurate result when the diffusion coefficients of the reacting species are not equal. When the reaction process is veiy complex, however, penetration theoiy is more difficult to use than film theory, and the latter method normally is preferred. [Pg.604]

For shorter penetration the use of p emitting isotopes is widely made applying much the same absorption law for p radiation as for y rays, with a minor modification. An alternative procedure used by Kingety and Paladino for the study of diffusion in AI2O3 employs two right cylinders, one only containing the radioactive Al isotopic species which emits relatively low energy ( ,nax = 0.511 MeV) p particles. [Pg.230]

Due to both carbonization and penetration of chloride ions, steel will pass from a passive to an active condition and (consequently) may corrode. If the mortar is completely surrounded by water, oxygen diffusion in wet mortar is extremely low so that the situation is corrosion resistant because the cathodic partial reaction according to Eq. (2-17) scarcely occurs. For this reason the mortar lining of waste pipes remains protective against corrosion even if it is completely carbonated or if it is penetrated by chloride ions. [Pg.174]

In the film-penetration model (H19), it is assumed that the reactant A penetrates through the surface element by one-dimensional unsteady-state molecular diffusion. Convective transport is assumed to be insignificant. The diffusing stream of the reactant A is depleted along the path of diffusion by its reversible reaction with the reactant B, which is an existing component of the liquid surface element. If such a reaction can be represented as... [Pg.342]

Kishinev ski/23 has developed a model for mass transfer across an interface in which molecular diffusion is assumed to play no part. In this, fresh material is continuously brought to the interface as a result of turbulence within the fluid and, after exposure to the second phase, the fluid element attains equilibrium with it and then becomes mixed again with the bulk of the phase. The model thus presupposes surface renewal without penetration by diffusion and therefore the effect of diffusivity should not be important. No reliable experimental results are available to test the theory adequately. [Pg.618]

A soluble gas is absorbed into a liquid with which it undergoes a second-order irreversible reaction. The process reaches a steady-state with the surface concentration of reacting material remaining constant at (.2ij and the depth of penetration of the reactant being small compared with the depth of liquid which can be regarded as infinite in extent. Derive the basic differential equation for the process and from this derive an expression for the concentration and mass transfer rate (moles per unit area and unit time) as a function of depth below the surface. Assume that mass transfer is by molecular diffusion. [Pg.857]

After polarization to more anodic potentials than E the subsequent polymeric oxidation is not yet controlled by the conformational relaxa-tion-nucleation, and a uniform and flat oxidation front, under diffusion control, advances from the polymer/solution interface to the polymer/metal interface by polarization at potentials more anodic than o-A polarization to any more cathodic potential than Es promotes a closing and compaction of the polymeric structure in such a magnitude that extra energy is now required to open the structure (AHe is the energy needed to relax 1 mol of segments), before the oxidation can be completed by penetration of counter-ions from the solution the electrochemical reaction starts under conformational relaxation control. So AHC is the energy required to compact 1 mol of the polymeric structure by cathodic polarization. Taking... [Pg.379]

The uses of CVD silicon dioxide films are numerous and include insulation between conductive layers, diffusion masks, and ion-implantation masks for the diffusion of doped oxides, passivation against abrasion, scratches, and the penetration of impurities and moisture. Indeed, Si02 has been called the pivotal material of IC s.1 1 Several CVD reactions are presently used in the production of Si02 films, each having somewhat different characteristics. These reactions are described in Ch. 11. [Pg.373]

The transient response of DMFC is inherently slower and consequently the performance is worse than that of the hydrogen fuel cell, since the electrochemical oxidation kinetics of methanol are inherently slower due to intermediates formed during methanol oxidation [3]. Since the methanol solution should penetrate a diffusion layer toward the anode catalyst layer for oxidation, it is inevitable for the DMFC to experience the hi mass transport resistance. The carbon dioxide produced as the result of the oxidation reaction of methanol could also partly block the narrow flow path to be more difScult for the methanol to diflhise toward the catalyst. All these resistances and limitations can alter the cell characteristics and the power output when the cell is operated under variable load conditions. Especially when the DMFC stack is considered, the fluid dynamics inside the fuel cell stack is more complicated and so the transient stack performance could be more dependent of the variable load conditions. [Pg.593]

The physical meaning of the g (ion) potential depends on the accepted model of an ionic double layer. The proposed models correspond to the Gouy-Chapman diffuse layer, with or without allowance for the Stem modification and/or the penetration of small counter-ions above the plane of the ionic heads of the adsorbed large ions. " The experimental data obtained for the adsorption of dodecyl trimethylammonium bromide and sodium dodecyl sulfate strongly support the Haydon and Taylor mode According to this model, there is a considerable space between the ionic heads and the surface boundary between, for instance, water and heptane. The presence in this space of small inorganic ions forms an additional diffuse layer that partly compensates for the diffuse layer potential between the ionic heads and the bulk solution. Thus, the Eq. (31) may be considered as a linear combination of two linear functions, one of which [A% - g (dip)] crosses the zero point of the coordinates (A% and 1/A are equal to zero), and the other has an intercept on the potential axis. This, of course, implies that the orientation of the apparent dipole moments of the long-chain ions is independent of A. [Pg.41]


See other pages where Penetrant of diffusion is mentioned: [Pg.366]    [Pg.481]    [Pg.356]    [Pg.205]    [Pg.384]    [Pg.231]    [Pg.84]    [Pg.384]    [Pg.366]    [Pg.481]    [Pg.356]    [Pg.205]    [Pg.384]    [Pg.231]    [Pg.84]    [Pg.384]    [Pg.106]    [Pg.23]    [Pg.269]    [Pg.84]    [Pg.52]    [Pg.262]    [Pg.330]    [Pg.289]    [Pg.502]    [Pg.138]    [Pg.265]    [Pg.375]    [Pg.892]    [Pg.145]    [Pg.489]    [Pg.826]    [Pg.1280]    [Pg.549]    [Pg.175]    [Pg.241]    [Pg.202]    [Pg.110]    [Pg.293]    [Pg.48]    [Pg.175]    [Pg.208]    [Pg.63]    [Pg.115]    [Pg.267]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Penetrant diffusion

© 2024 chempedia.info