Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole moments apparent

Then, if we look through all the point group character tables in Appendix A to see if any of the translational symmetry species is totally symmetric, it is apparent that molecules belonging to only the following point groups have a permanent dipole moment ... [Pg.99]

An appreciable amount of information concerning the conformational preferences of substituted heterocycles has accrued, largely through dipole moment and NMR studies. However, the earliest appreciation of this topic apparently arose out of the extension of studies of restricted rotation in biphenyls to heterocyclic analogues. [Pg.32]

The HF level as usual overestimates the polarity, in this case leading to an incorrect direction of the dipole moment. The MP perturbation series oscillates, and it is clear that the MP4 result is far from converged. The CCSD(T) method apparently recovers the most important part of the electron correlation, as compared to the full CCSDT result. However, even with the aug-cc-pV5Z basis sets, there is still a discrepancy of 0.01 D relative to the experimental value. [Pg.287]

The calculations so far have been concerned with the permanent charge distribution which the molecule would have when isolated, and which would be observed in its dipole moment. The factor that actually determines the orientation of the entering group, however, is the charge distribution at the instant of attack, which differs from the permanent charge distribution in consequence of polarization by the entering group. In most cases it is not necessary to take this latter effect into account explicitly, since it represents only a small correction. However, in certain cases it is apparently of decisive importance.7... [Pg.200]

The concept of hyperconjugation arose from the discovery of apparently anomalous electron-release patterns for alkyl groups. By the field effect alone, the order of electron release for simple alkyl groups connected to an unsaturated system is fert-butyl > isopropyl > ethyl > methyl, and this order is observed in many phenomena. Thus, the dipole moments in the gas phase of PhCHa, PhC2Hs, PhCH(CHa)2, and PhC(CHa)a are, respectively, 0.37, 0.58, 0.65 and 0.700. ... [Pg.71]

Electric dipole moment measurements on R3SiCo(CO)4, (R3Si)2Fe(CO)4, and related compounds have indicated a relationship between v(CO) and charge transfer in the Si—M bond within a given series the central transition metal is apparently not charged 156). Application of the relationship to HjSiCo(CO)4 suggests a small bond dipole in the sense... [Pg.288]

The dipole moment of tributylpliosphine varies from 1.49 to 2.4 D according to the solvent used. Inductive effects in phosphines have been estimated by comparing the calculated and observed dipole moments, and the apparent dipole moment due to the lone electron pair on phosphorus has been estimated. A method of calculating the hybridization of the phosphorus atom in terms of bond angles is suggested which leads to a linear relationship between hybridization ratio and lone electron pair moment. The difference between experimental and calculated dipole moments for para-substitued arylphosphines, phosphine sulphides, and phosphinimines has been used to estimate mesomeric transfer of electrons to phosphorus. [Pg.283]

The expression in brackets is a more usable dependency [Eq. (30)] and describes the physical sense of the apparent dipole moment p. The model up to now has been used only for adsorption from solution. [Pg.40]

The physical meaning of the g (ion) potential depends on the accepted model of an ionic double layer. The proposed models correspond to the Gouy-Chapman diffuse layer, with or without allowance for the Stem modification and/or the penetration of small counter-ions above the plane of the ionic heads of the adsorbed large ions. " The experimental data obtained for the adsorption of dodecyl trimethylammonium bromide and sodium dodecyl sulfate strongly support the Haydon and Taylor mode According to this model, there is a considerable space between the ionic heads and the surface boundary between, for instance, water and heptane. The presence in this space of small inorganic ions forms an additional diffuse layer that partly compensates for the diffuse layer potential between the ionic heads and the bulk solution. Thus, the Eq. (31) may be considered as a linear combination of two linear functions, one of which [A% - g (dip)] crosses the zero point of the coordinates (A% and 1/A are equal to zero), and the other has an intercept on the potential axis. This, of course, implies that the orientation of the apparent dipole moments of the long-chain ions is independent of A. [Pg.41]

Kds are the constants of rates of chemical reactions of oxygen adsorption and desorbtion from ZnO film and Aq are electron work function from ZnO before oxygen gets adsorbed and its variation caused by dipole moment of adsorbed complexes being formed U is the adsorption activation energy of non-electrostatic nature [ M] is the concentration of solvent molecules. Apparently we can write down the following expression for the stationary system ... [Pg.211]

Apparently 9-phenylfluorenyl is not only a good anion but also a bad cation. The chloride probably shares in some of the resonance stabilization of the anion while the cation does not. Another example of a connection between the resonance of an anion and the properties of a related covalent compound is provided by the hydrocarbon triphenyl-methylcyclopentadiene, which has an unusually high dipole moment although it does not conduct in liquid sulfur dioxide.180... [Pg.80]

In the gas phase the dipole moment determined through Eq. (4.10) refers to an individual adsorbed particle. This is not so in the electrochemical situation. The dipole moment of an adsorbed species will tend to align neighboring solvent molecules in the opposite direction, thereby reducing the total dipole potential drop (see Fig. 4.3). Only the total change in dipole potential can be measured, and there is no way of dividing this into separate contributions from the adsorbate bond and the reorientation of the solvent. The apparent dipole potential of an ion adsorbed from a solution on a particular metal is often substantially smaller than that of the same ion adsorbed in the vacuum (see Table 4.1), since it contains a contribution from the solvent. For comparison we note that the dipole moments of alkali ions adsorbed from the vacuum are usually of the order of the order of 10 29 C m. [Pg.39]


See other pages where Dipole moments apparent is mentioned: [Pg.577]    [Pg.103]    [Pg.577]    [Pg.103]    [Pg.379]    [Pg.668]    [Pg.210]    [Pg.18]    [Pg.2]    [Pg.400]    [Pg.1247]    [Pg.405]    [Pg.434]    [Pg.208]    [Pg.40]    [Pg.431]    [Pg.7]    [Pg.38]    [Pg.419]    [Pg.364]    [Pg.431]    [Pg.34]    [Pg.80]    [Pg.239]    [Pg.276]    [Pg.132]    [Pg.151]    [Pg.42]    [Pg.4]    [Pg.150]    [Pg.59]    [Pg.51]    [Pg.52]    [Pg.73]    [Pg.214]    [Pg.392]    [Pg.284]    [Pg.61]    [Pg.42]    [Pg.56]    [Pg.317]   
See also in sourсe #XX -- [ Pg.264 , Pg.299 ]




SEARCH



Apparent surface dipole moment

© 2024 chempedia.info