Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent transfer processes

Visualizing Ion and Solvent Transfer Processes in Electroactive Polymer Films... [Pg.489]

Visualizing ion and solvent transfer processes In electroactive polymer Dims Ch. 13... [Pg.490]

A3.8.5 SOLVENT EFFECTS IN QUANTUM CHARGE TRANSFER PROCESSES... [Pg.893]

In this section, the results of a computational study 48 will be used to illustrate the effects of the solvent—and the significant complexity of these effects—in quantum charge transfer processes. The particular example... [Pg.893]

Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case. Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case.
After image transfer, the patterned resist must be readily and completely removable without substrate damage. The pattern often can be stripped from the substrate with a mild organic solvent. Proprietary stripper formulations or plasma oxidation treatments are utilized when the imaging chemistry or image transfer process has iasolubilized the pattern. [Pg.114]

In general, the foUowing steps can occur in an overall Hquid—soHd extraction process solvent transfer from the bulk of the solution to the surface of the soHd penetration or diffusion of the solvent into the pores of the soHd dissolution of the solvent into the solute solute diffusion to the surface of the particle and solute transfer to the bulk of the solution. The various fundamental mechanisms and processes involved in these steps make it impracticable or impossible to describe leaching by any rigorous theory. [Pg.87]

If a neutral chelate formed from a ligand such as acetylacetone is sufficiently soluble in water not to precipitate, it may stiH be extracted into an immiscible solvent and thus separated from the other constituents of the water phase. Metal recovery processes (see Mineral recovery and processing), such as from dilute leach dump Hquors, and analytical procedures are based on this phase-transfer process, as with precipitation. Solvent extraction theory and many separation systems have been reviewed (42). [Pg.393]

The main objective for calculating the number of theoretical stages (or mass-transfer units) in the design of a hquid-liquid extraction process is to evaluate the compromise between the size of the equipment, or number of contactors required, and the ratio of extraction solvent to feed flow rates required to achieve the desired transfer of mass from one phase to the other. In any mass-transfer process there can be an infinite number of combinations of flow rates, number of stages, and degrees of solute transfer. The optimum is governed by economic considerations. [Pg.1460]

The details of proton-transfer processes can also be probed by examination of solvent isotope effects, for example, by comparing the rates of a reaction in H2O versus D2O. The solvent isotope effect can be either normal or inverse, depending on the nature of the proton-transfer process in the reaction mechanism. D3O+ is a stronger acid than H3O+. As a result, reactants in D2O solution are somewhat more extensively protonated than in H2O at identical acid concentration. A reaction that involves a rapid equilibrium protonation will proceed faster in D2O than in H2O because of the higher concentration of the protonated reactant. On the other hand, if proton transfer is part of the rate-determining step, the reaction will be faster in H2O than in D2O because of the normal primary kinetic isotope effect of the type considered in Section 4.5. [Pg.232]

The reaction of perfluoroalkyl iodides with electron donor nucleophiles such as sodium arene and alkane sulfinates in aprotic solvents results in radical addition to alkenes initiated by an electron-transfer process The additions can be carried out at room temperature, with high yields obtained for strained olefins [4 (equations 3-5)... [Pg.747]

The Nenitzescu process is presumed to involve an internal oxidation-reduction sequence. Since electron transfer processes, characterized by deep burgundy colored reaction mixtures, may be an important mechanistic aspect, the outcome should be sensitive to the reaction medium. Many solvents have been employed in the Nenitzescu reaction including acetone, methanol, ethanol, benzene, methylene chloride, chloroform, and ethylene chloride however, acetic acid and nitromethane are the most effective solvents for the process. The utility of acetic acid is likely the result of its ability to isomerize the olefinic intermediate (9) to the isomeric (10) capable of providing 5-hydroxyindole derivatives. The reaction of benzoquinone 4 with ethyl 3-aminocinnamate 35 illustrates this effect. ... [Pg.150]

In any pure liquid, the transfer of a proton from one molecule to another (distant) molecule has been named autoprololysis. I11 any solvent this process creates a positive and a negative ion and must clearly belong to class II it will not differ from other proton transfers of class II except for the fact that the relation between Kx and K will be different. On the left-hand side of (127) and (128) there is no solute particle hence the increase in the cratic term is greater than in (119) or (121). In (128) we have Aq — +2, and... [Pg.119]

Let us discuss now the conditions required for the electron transfer process. This reaction requires, of course, a suitable electron donor (a species characterized by a low ionization potential) and a proper electron acceptor, e.g., a monomer characterized by a high electron affinity. Furthermore, the nature of the solvent is often critical for such a reaction. The solvation energy of ions contributes substantially to the heat of reaction, hence the reaction might occur in a strong solvating solvent, but its course may be reversed in a poorly solvating medium. A good example of this behavior is provided by the reaction Na -f- naphthalene -> Na+ + naphthalene". This reaction proceeds rapidly in tetrahydrofuran or in dimethoxy... [Pg.150]

Finally, an ingenious synthetic sequence by Trost, Cossy and Burks201 includes a unique desulphonylation reaction that involves an electron-transfer process. The synthetic sequence uses 1, l-bis(phenylsulphonyl)cyclopropane as a source of three carbon atoms, since this species is readily alkylated even by weakly nucleophilic species. Given an appropriate structure for the nucleophile, Trost found that desulphonylation with lithium phenanthrenide in an aprotic solvent allowed for an efficient intramolecular trapping of the resultant carbanion (equation 88). This desulphonylation process occurs under very mild conditions and in high yields it will undoubtedly attract further interest. [Pg.961]

In processing, it is frequently necessary to separate a mixture into its components and, in a physical process, differences in a particular property are exploited as the basis for the separation process. Thus, fractional distillation depends on differences in volatility. gas absorption on differences in solubility of the gases in a selective absorbent and, similarly, liquid-liquid extraction is based on on the selectivity of an immiscible liquid solvent for one of the constituents. The rate at which the process takes place is dependent both on the driving force (concentration difference) and on the mass transfer resistance. In most of these applications, mass transfer takes place across a phase boundary where the concentrations on either side of the interface are related by the phase equilibrium relationship. Where a chemical reaction takes place during the course of the mass transfer process, the overall transfer rate depends on both the chemical kinetics of the reaction and on the mass transfer resistance, and it is important to understand the relative significance of these two factors in any practical application. [Pg.573]


See other pages where Solvent transfer processes is mentioned: [Pg.24]    [Pg.251]    [Pg.1266]    [Pg.885]    [Pg.24]    [Pg.251]    [Pg.1266]    [Pg.885]    [Pg.894]    [Pg.16]    [Pg.321]    [Pg.520]    [Pg.50]    [Pg.621]    [Pg.1359]    [Pg.374]    [Pg.236]    [Pg.1116]    [Pg.258]    [Pg.254]    [Pg.121]    [Pg.182]    [Pg.161]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Solvent transfer

© 2024 chempedia.info