Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particulate reactors

A more recent review by Fahidy (FI) concerns the chemical engineering approach to electrochemical processes, such as fluidized-bed reactors, bipolar particulate reactors, pulsed electrochemical reactors, gas-phase electrochemical reactors, electrocrystallization and electrodissolution, and the enhancement of heat and mass transfer in electric fields. In this review, the author also discusses dimensionless mass-transfer equations applied in cell design. Such equations are reviewed in greater detail in Section VI. [Pg.218]

Although mote expensive to fabricate than the pelleted catalyst, and usually more difficult to replace or regenerate, the honeycomb catalyst is more widely used because it affords lower pressure losses from gas flow it is less likely to collect particulates (fixed-bed) or has no losses of catalyst through attrition, compared to fiuidized-bed and it allows a mote versatile catalyst bed design (18), having a weU-defined flow pattern (no channeling) and a reactor that can be oriented in any direction. [Pg.503]

Tubular reactors have been the main tools to study continuous flow processes for vapor or gas-phase reactions. These are also used for reaction in tv o flowing phases over a solid catalyst. When the catalyst is in a fixed bed, the contact between the liquid on the outside surface of the particulate is uncertain. For slurry-type solid catalyst the residence time of the catalyst or the quantity in the reactor volume can be undefined. [Pg.31]

This reaction is carried out in tall fluidized beds of high L/dt ratio. Pressures up to 200 kPa are used at temperatures around 300°C. The copper catalyst is deposited onto the surface of the silicon metal particles. The product is a vapor-phase material and the particulate silicon is gradually consumed. As the particle diameter decreases the minimum fluidization velocity decreases also. While the linear velocity decreases, the mass velocity of the fluid increases with conversion. Therefore, the leftover small particles with the copper catalyst and some debris leave the reactor at the top exit. [Pg.183]

Fluorides and dust are emitted to the air from the fertilizer plant. All aspects of phosphate rock processing and finished product handling generate dust, from grinders and pulverizers, pneumatic conveyors, and screens. The mixer/reactors and dens produce fumes that contain silicon tetrafluoride and hydrogen fluoride. A sulfuric acid plant has two principal air emissions sulfur dioxide and acid mist. If pyrite ore is roasted, there will also be particulates in air emissions that may contain heavy metals such as cadmium, mercury, and lead. [Pg.69]

Computer sensitivity studies show that hole size strongly affects the fraction of fission products released from the containment. The failure location determines mitigation due to release into another building in which condensation and particulate removal occur. The quantity released depends on the time of containment fails relative to reactor vessel failure. If containment integrity is maintained for several hours after core melt, then natural and engineered mechanisms (e.g., deposition, condensation, and filtration) can significantly reduce the quantity and radioactivity of the aerosols released to the atmosphere. [Pg.380]

Deep-bed condensate polishers are commonly used for nuclear reactor power plants. Due to the extreme operating conditions, the resin is sometimes taken out of service as frequently as every 3 weeks for ultrasonic cleaning. This process removes the iron oxides and other particulates filtered out by the resin media. [Pg.381]

These reactors contain suspended solid particles. A discontinuous gas phase is sparged into the reactor. Coal liquefaction is an example where the solid is consumed by the reaction. The three phases are hydrogen, a hydrocarbon-solvent/ product mixture, and solid coal. Microbial cells immobilized on a particulate substrate are an example of a three-phase system where the slurried phase is catalytic. The liquid phase is water that contains the organic substrate. The gas phase supplies oxygen and removes carbon dioxide. The solid phase consists of microbial cells grown on the surface of a nonconsumable solid such as activated carbon. [Pg.413]

Y. T, Shah, Design Parameters for Mechanically Agitated Reactors Mooson Kwauk, Particulate Fluidization An Overview... [Pg.345]

An appreciable increase in working area of the electrodes can be attained with porous electrodes (Section 18.4). Such electrodes are widely used in batteries, and in recent years they are also found in electrolyzers. Attempts are made to use particulate electrodes which consist of a rather thick bed of particulate electrode material into which the auxiliary electrode is immersed together with a separator. Other efforts concern fiuidized-bed reactors, where a finely divided electrode material is distributed over the full electrolyte volume by an ascending liquid or gas flow and collides continuously with special current collector electrodes (Section 18.5). [Pg.330]

Once particulate matter is removed, the syngas passes through a two stages catalytic reactor, where CO reacts with steam to produce C02 and further yield H2 water-gas-shift (WGS) reaction. [Pg.86]

Because of the inadequacies of the aforementioned models, a number of papers in the 1950s and 1960s developed alternative mathematical descriptions of fluidized beds that explicitly divided the reactor contents into two phases, a bubble phase and an emulsion or dense phase. The bubble or lean phase is presumed to be essentially free of solids so that little, if any, reaction occurs in this portion of the bed. Reaction takes place within the dense phase, where virtually all of the solid catalyst particles are found. This phase may also be referred to as a particulate phase, an interstitial phase, or an emulsion phase by various authors. Figure 12.19 is a schematic representation of two phase models of fluidized beds. Some models also define a cloud phase as the region of space surrounding the bubble that acts as a source and a sink for gas exchange with the bubble. [Pg.522]

Attrition of particulate materials occurs wherever solids are handled and processed. In contrast to the term comminution, which describes the intentional particle degradation, the term attrition condenses all phenomena of unwanted particle degradation which may lead to a lot of different problems. The present chapter focuses on two particular process types where attrition is of special relevance, namely fluidized beds and pneumatic conveying lines. The problems caused by attrition can be divided into two broad categories. On the one hand, there is the generation of fines. In the case of fluidized bed catalytic reactors, this will lead to a loss of valuable catalyst material. Moreover, attrition may cause dust problems like explosion hazards or additional burden on the filtration systems. On the other hand, attrition causes changes in physical properties of the material such as particle size distribution or surface area. This can result in a reduction of product quality or in difficulties with operation of the plant. [Pg.435]


See other pages where Particulate reactors is mentioned: [Pg.144]    [Pg.550]    [Pg.144]    [Pg.550]    [Pg.390]    [Pg.384]    [Pg.238]    [Pg.518]    [Pg.298]    [Pg.123]    [Pg.544]    [Pg.544]    [Pg.270]    [Pg.92]    [Pg.509]    [Pg.1875]    [Pg.2190]    [Pg.2219]    [Pg.2375]    [Pg.5]    [Pg.63]    [Pg.417]    [Pg.478]    [Pg.235]    [Pg.103]    [Pg.849]    [Pg.223]    [Pg.527]    [Pg.69]    [Pg.112]    [Pg.415]    [Pg.255]    [Pg.295]    [Pg.129]    [Pg.262]    [Pg.319]    [Pg.42]    [Pg.594]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Particulate balance reactor model

Polymerization reactors particulate products

© 2024 chempedia.info