Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium stabilizers

Thus it appears that the presence of two soft carbons on the palladium stabilizes the trans coordination of hard ligands and drives the selective coordination of ambidente ligands through their hardest atom. These results, as those described in the previous scheme, constitute other examples of the antisymbiotic effect which can be observed in soft palladium(II) complexes. [Pg.58]

PVP, a water soluble amine-based pol5mer, was found to be an optimum protective agent because the reduction of noble metal salts by polyols in the presence of other surfactants often resulted in non-homogenous colloidal dispersions. PVP was the first material to be used for generating silver and silver-palladium stabilized particles by the polyol method [231-233]. By reducing the precur-sor/PVP ratio, it is even possible to reduce the size of the metal particles to few nanometers. These colloidal particles are isolable but surface contaminations are easily recognized because samples washed with the solvent and dried in the air are subsquently not any more pyrophoric [231,234 236]. [Pg.31]

Also, the trimerization reaction was observed by using jr-allyl complexes of palladium stabilized by chelating ligands, such as 28 and 29 (38). The reaction was carried out at 70°C in dimethylformamide (DMF) or dimethyl sulfoxide (DMSO), and 1,3,6,10-dodecatetraene (27) was obtained in 60% yield at 30% conversion. [Pg.150]

The synthesis of sodium trifluoropropenylbenzenesulfonate, (Equation 12) uses the diazo compound obtained from aniline-2-sulfonic acid and isopropyl nitrite in isopropanol for the oxidative addition to palladium(0)/dba, in the absence of phosphine ligands, with NaOAc as buifer. The substrate itself contributes to palladium stabilization (Equation 16). [Pg.176]

The process reported here uses a clever combination of the factors that promote catalyst life and efficiency. The soluble phosphine or its phosphonium salt, used in a molar excess of about 50 over palladium, stabilizes the palladium complex in aqueous solution the sulfolane-water solution ensures the solubility of the reactants, while extraction with hexane under CO2 pressure recovers the product with only small contamination by palladium, phosphorus or nitrogen. The phosphine or its phosphonium salt and the ammonium bicarbonate remain in the aqueous solution. Since the TON is good and the solution can be recycled, consumption of palladium is very low. [Pg.187]

Table 10. Selective hydrogenation of dienes by colloidal palladium stabilized by PVPD or the polyionic complex, PAA-PEI... Table 10. Selective hydrogenation of dienes by colloidal palladium stabilized by PVPD or the polyionic complex, PAA-PEI...
Fischer J. L. (2002) Electrothermal atomization of palladium-stabilized selenium in the presence of phosphate, Spectrochim. Acta, Part B 57 ... [Pg.371]

NMR signals of the amino acid ligand that are induced by the ring current of the diamine ligand" ". From the temperature dependence of the stability constants of a number of ternary palladium complexes involving dipeptides and aromatic amines, the arene - arene interaction enthalpies and entropies have been determined" ". It turned out that the interaction is generally enthalpy-driven and counteracted by entropy. Yamauchi et al. hold a charge transfer interaction responsible for this effect. [Pg.89]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

Catalysts for dielectric surfaces are more complex than the simple salts used on metals. The original catalysts were separate solutions of acidic staimous chloride [7772-99-8J, used to wet the surface and deposit an adherent reducing agent, and acidic palladium chloride [7647-10-17, which was reduced to metallic palladium by the tin. This two-step catalyst system is now essentially obsolete. One-step catalysts consist of a stabilized, pre-reacted solution of the palladium and staimous chlorides. The one-step catalyst is more stable, more active, and more economical than the two-step catalyst (21,23). A separate acceleration or activation solution removes loose palladium and excess tin before the catalyzed part is placed in the electroless bath, prolonging bath life and stability. [Pg.107]

Catalysis is done by an acidic solution of the stabilized reaction product of stannous chloride and palladium chloride. Catalyst absorption is typically 1—5 p-g Pd per square centimeter. Other precious metals can be used, but they are not as cost-effective. The exact chemical identity of this catalyst has been a matter of considerable scientific interest (19—21,23). It seems to be a stabilized coUoid, co-deposited on the plastic with excess tin. The industry trends have been to use higher activity catalysts at lower concentrations and higher temperatures. Typical usage is 40—150 ppm of palladium at 60°C maximum, and a 30—60-fold or more excess of stannous chloride. Catalyst variations occasionally used include alkaline and non-noble metal catalysts. [Pg.110]

The mechanism by which this low oxidation state is stabilized for this triad has been the subject of some debate. That it is not straightforward is clear from the fact that, in contrast to nickel, palladium and platinum require the presence of phosphines for the formation of stable carbonyls. For most transition metals the TT-acceptor properties of the ligand are thought to be of considerable importance and there is... [Pg.1166]

Palladium forms clusters of these types far less readily than nickel and platinum, unless they are stabilized by o-donor ligands such as phosphines. This may be due to the lower energy of Pd-Pd bonds as reflected in the sublimation energies, 427, 354 and 565 kJ mol for Ni, Pd and Pt. [Pg.1170]

The above technique is limited to compounds of sufficient volatility and thermal stability. The reaction can be made more general by the use of palladium 44), which will reduce an intermediate benzylamine. [Pg.98]

The authors describe a stabilizing effect of the ionic liquid on the palladium catalyst. In almost all reactions no precipitation of elemental palladium was observed, even at complete conversion of the aromatic halide. The reaction products were isolated by distillation from the nonvolatile ionic liquid. [Pg.241]

As well as phosphorus ligands, heterocyclic carbenes ligands 10 have proven to be interesting donor ligands for stabilization of transition metal complexes (especially palladium) in ionic liquids. The imidazolium cation is usually presumed to be a simple inert component of the solvent system. However, the proton on the carbon atom at position 2 in the imidazolium is acidic and this carbon atom can be depro-tonated by, for example, basic ligands of the metal complex, to form carbenes (Scheme 5.3-2). [Pg.269]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

Thus, in contrast to benzothiepins, dibenzo compounds can be synthesized by direct acid-catalyzed elimination of water from hydroxy derivatives, or of amines from amino derivatives, at elevated temperatures due to their thermal stability. As in the case of benzothiepins, dibenzo derivatives can also be prepared by base-catalyzed elimination from the corresponding halo derivatives however, the yields are somewhat lower compared to the acid-catalyzed reactions. As a special case, an aziridine derivative was deaminated by palladium-catalyzed hydrogenation to afford the corresponding dibenzothiepin.69... [Pg.79]

In the cyclization of the corresponding cis-epoxides, with the aim of obtaining the corresponding cis-2,3-disubstituted tetrahydropyrans, a similar trend was observed. For these systems, however, the 6-endo pathway was less favored, which was ascribed to difficulties in attaining a TS conformation that would allow for maximum stabilization of the developing p-orbital with the adjacent 7t-system. Alternatively, palladium-catalyzed cyclization of the tetrabutylammonium alkoxide derived from 33b results in the corresponding ris-2,3-disubstituted tetrahydro-pyran in excellent yield and selectivity (90%, dr >99 1), while the ris-epoxide gives stereoisomer 37b (86%, dr 98 2) [112]. [Pg.333]

Hydroxy-l-alkenyl diisopropylcarbamates 2 (X = OCb), in this respect, occupy a medium position since they are stable in strongly acidic and basic protic solvents. For deblocking vinyl carbamates, the presence of catalytic amounts of mercuric or palladium(II) salts is required. Due to this stability, several reactions of homoallylic alcohols, proceeding with high diastereo-selectivity, e g., epoxidation, are applicable in order to introduce further hetero-substituents. [Pg.227]

The discussion so far implies that membrane materials are organic polymers, and in fact most membranes used commercially are polymer-based. However, in recent years, interest in membranes made of less conventional materials has increased. Ceramic membranes, a special class of microporous membranes, are being used in ultrafiltration and microfiltration applications for which solvent resistance and thermal stability are required. Dense, metal membranes, particularly palladium membranes, are being considered for the separation of hydrogen from gas mixtures, and supported liquid films are being developed for carrier-facilitated transport processes. [Pg.353]


See other pages where Palladium stabilizers is mentioned: [Pg.73]    [Pg.6]    [Pg.487]    [Pg.525]    [Pg.534]    [Pg.305]    [Pg.419]    [Pg.379]    [Pg.848]    [Pg.73]    [Pg.6]    [Pg.487]    [Pg.525]    [Pg.534]    [Pg.305]    [Pg.419]    [Pg.379]    [Pg.848]    [Pg.300]    [Pg.69]    [Pg.250]    [Pg.113]    [Pg.299]    [Pg.49]    [Pg.129]    [Pg.139]    [Pg.602]    [Pg.483]    [Pg.137]    [Pg.154]    [Pg.202]    [Pg.237]    [Pg.558]    [Pg.560]    [Pg.185]    [Pg.581]    [Pg.601]    [Pg.693]   
See also in sourсe #XX -- [ Pg.3 , Pg.7 ]




SEARCH



Stability palladium

© 2024 chempedia.info