Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica-based packings

In a sense each monolithic column is unique, or produced as a product of a separate batch, because the columns are prepared one by one by a process including monolith formation, column fabrication, and chemical modification. Reproducibility of Chro-molith columns has been examined, and found to be similar to particle-packed-silica-based columns of different batches (Kele and Guiochon, 2002). Surface coverage of a Chromolith reversed-phase (RP) column appears to be nearly maximum, but greater silanol effects were found for basic compounds and ionized amines in buffered and nonbuffered mobile phases than advanced particle-packed columns prepared from high purity silica (McCalley, 2002). Small differences were observed between monolithic silica columns derived from TMOS and those from silane mixtures for planarity in solute structure as well as polar interactions (Kobayashi et al., 2004). [Pg.157]

Mcntasty el al. [35] and others [13, 36] have measured methane uptakes on zeolites. These materials, such as the 4A, 5A and 13X zeolites, have methane uptakes which are lower than would be predicted using the above relationship. This suggests that either the zeolite cavity is more attractive to 77 K nitrogen than a carbon pore, or methane at 298 K, 3.4 MPa, is attracted more to a carbon pore than a zeolite. The latter proposition is supported by the modeling of Cracknel et al. [37, 38], who show that methane densities in silica cavities will be lower than for the equivalent size parallel slit shaped pore of their model carbon. Results reported by Ventura [39] for silica xerogels lead to a similar conclusion. Thus, porous silica adsorbents with equivalent nitrogen derived micropore volumes to carbons adsorb and deliver less methane. For delivery of 150 V./V a silica based adsorbent would requne a micropore volume in excess of 0.70 ml per ml of packed vessel volume. [Pg.287]

A liquid mobile phase is far denser than a gas and, therefore, carries more momentum. Thus, in its progress through the interstices of the packing, violent eddies are formed in the inter-particular spaces which provides rapid solute transfer and, in effect, greatly increases the effective diffusivity. Thus, the resistance to mass transfer in that mobile phase which is situated in the interstices of the column is virtually zero. However, assuming the particles of packing are porous (i.e., silica based) the particles of packing will be filled with the mobile phase and so there will... [Pg.376]

Select mobile phases for HPSEC based on their ability to dissolve the sample and their compatibility with the column. Zorbax PSM columns are compatible with a wide variety of organic and aqueous mobile phases (Table 3.4), but analysts should avoid aqueous mobile phases with a pH greater than 8.5. As mentioned earlier, select mobile phases that minimize adsorption between samples and silica-based packings. Sample elution from the column after the permeation volume indicates that adsorption has occurred. If adsorption is observed or suspected, select a mobile phase that will be more strongly adsorbed onto the silica surface than the sample. For example, N,N-dimethyl-formamide (DMF) is often used for polyurethanes and polyacrylonitrile because it eliminates adsorption and dissolves the polymers. When aqueous mobile phases are required, highly polar macromolecules such as Carbowax can be used to coat the silica surface and eliminate adsorption. Table 3.5 provides a list of recommended mobile-phase conditions for some common polymers. [Pg.82]

The packed columns of Shodex PROTEIN KW-800 series are packed with hydrophilic silica-based gels and are best suited for analyses of proteins and water-soluble polymers (Table 6.14, page 213). [Pg.204]

The Jordi polyamine column is a polar column for simple sugar and polysaccharide applications. The amine groups are bonded to the DVB backbone and are stable in aqueous mobile phases. This material does not self-hydrolyze as do many silica-based amino packings (Fig. 13.14). [Pg.376]

The elution behavior of various polymers near their critical adsorption point with silica gel packings and various eluents has been studied (12). It was of interest to apply hybrid column systems composed of active ( critical ) packings (silica gels) in combination with nonactive (nonadsorptive) PS/DVB and DVB-based gels. Some PS/DVB and DVB gels exhibited rather strong... [Pg.447]

Problems with adsorption onto the packing material are more common in aqueous GPC than in organic solvents. Adsorption onto the stationary phase can occur even for materials that are well soluble in water if there are specific interactions between the analyte and the surface. A common example of such an interaction is the analysis of pEG on a silica-based column. Because of residual silanols on the silica surface, hydrogen bonding can occur and pEG cannot be chromatographed reliably on silica-based columns. Eikewise, difficulties are often encountered with polystyrenesulfonate on methacrylate-based columns. [Pg.556]

Finally, mention should be made to the development of silica-based ion exchange packings for HPLC. Their preparation is similar to that for the... [Pg.188]

The analysis demonstrates the elegant use of a very specific type of column packing. As a result, there is no sample preparation, so after the serum has been filtered or centrifuged, which is a precautionary measure to protect the apparatus, 10 p.1 of serum is injected directly on to the column. The separation obtained is shown in figure 13. The stationary phase, as described by Supelco, was a silica based material with a polymeric surface containing dispersive areas surrounded by a polar network. Small molecules can penetrate the polar network and interact with the dispersive areas and be retained, whereas the larger molecules, such as proteins, cannot reach the interactive surface and are thus rapidly eluted from the column. The chemical nature of the material is not clear, but it can be assumed that the dispersive surface where interaction with the small molecules can take place probably contains hydrocarbon chains like a reversed phase. [Pg.225]

The more useful types of chirally active bonded phases are those based on the cyclodextrins. There are a number of different types available, some of which have both dispersive or polar groups bonded close to the chirally active sites to permit mixed interactions to occur. This emphasizes the basic entropic differences between the two isomers being separated. A range of such products is available from ASTEC Inc. and a separation of the d and / isomers of scopolamine and phenylephrine are shown in figure 4. The separations were carried out on a cyclodextrin bonded phase (CYCLOBOND 1 Ac) that had been acetylated to provide semi-polar interacting groups in close proximity to the chiral centers of the cyclodextrin. The column was 25 cm long, 4.6 mm in diameter and packed with silica based spherical bonded phase particles 5pm in diameter. Most of the columns supplied by ASTEC Inc. have these dimensions and, consequently, provide a... [Pg.291]

An example of the separation of a mixture of explosives on a C8 column is shown in figure 7. The column was 3.3 cm long, 4.6 mm in diameter and packed with 3 pm C8 silica based reverse phase. This short column has a potential efficiency of 5,500 theoretical plates. [Pg.298]

Another example of the use of a C8 column for the separation of some benzodiazepines is shown in figure 8. The column used was 25 cm long, 4.6 mm in diameter packed with silica based, C8 reverse phase packing particle size 5 p. The mobile phase consisted of 26.5% v/v of methanol, 16.5%v/v acetonitrile and 57.05v/v of 0.1M ammonium acetate adjusted to a pH of 6.0 with glacial acetic acid and the flow-rate was 2 ml/min. The approximate column efficiency available at the optimum velocity would be about 15,000 theoretical plates. The retention time of the last peak is about 12 minutes giving a retention volume of 24 ml. [Pg.300]

The most w tely used stationary phases resemble conventional silica-based co Hi packings in which tihe chiral ligand is... [Pg.967]

Chemical composition of packings. Today, a wider variety of different support materials is available from which to choose. Silica is still widely used, though preparative grades often possess a relatively wide particle size distribution as compared to polymer-based supports. One serious limitation of silica-based supports is the low stability of silicas to alkaline pH conditions, which limits use of caustic solutions in sanitization and depyrogenation. Polymer-based supports, which include poly(styrene-divi-nyl benzene)- or methacrylate-based materials, are widely available and have gained increased acceptance and use. Nonfunctionalized poly(styrene-divinyl... [Pg.108]


See other pages where Silica-based packings is mentioned: [Pg.399]    [Pg.347]    [Pg.399]    [Pg.347]    [Pg.28]    [Pg.93]    [Pg.326]    [Pg.346]    [Pg.347]    [Pg.350]    [Pg.126]    [Pg.56]    [Pg.189]    [Pg.223]    [Pg.866]    [Pg.150]    [Pg.88]    [Pg.89]    [Pg.139]    [Pg.318]    [Pg.163]    [Pg.167]    [Pg.174]    [Pg.175]    [Pg.309]    [Pg.680]    [Pg.721]    [Pg.740]    [Pg.766]    [Pg.820]    [Pg.108]    [Pg.109]    [Pg.114]    [Pg.151]    [Pg.201]    [Pg.203]    [Pg.203]   
See also in sourсe #XX -- [ Pg.62 , Pg.63 , Pg.64 ]




SEARCH



Hybrid packings silica-based

Packing material silica-based

Reversed-phase packing materials, silica-based

Silica based

Silica-based packings, mass

Silica-based packings, mass transfer with

Size-exclusion chromatography silica-based packings

© 2024 chempedia.info