Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PACK program

Sometimes they are two-pack programs, as with most Stabilized Phosphate Programs. Or they may be designed to control a more limited set of circumstances, with additional, specific adjunct products being employed, as and when necessary. [Pg.304]

H. A. Scheraga, PACK Programs for Packing Polypeptide Chains, 1996, online documentation. [Pg.449]

Figure Bl.21.1. Atomic hard-ball models of low-Miller-index bulk-temiinated surfaces of simple metals with face-centred close-packed (fee), hexagonal close-packed (licp) and body-centred cubic (bcc) lattices (a) fee (lll)-(l X 1) (b)fcc(lO -(l X l) (c)fcc(110)-(l X 1) (d)hcp(0001)-(l x 1) (e) hcp(l0-10)-(l X 1), usually written as hcp(l010)-(l x 1) (f) bcc(l 10)-(1 x ]) (g) bcc(100)-(l x 1) and (li) bcc(l 11)-(1 x 1). The atomic spheres are drawn with radii that are smaller than touching-sphere radii, in order to give better depth views. The arrows are unit cell vectors. These figures were produced by the software program BALSAC [35]-... Figure Bl.21.1. Atomic hard-ball models of low-Miller-index bulk-temiinated surfaces of simple metals with face-centred close-packed (fee), hexagonal close-packed (licp) and body-centred cubic (bcc) lattices (a) fee (lll)-(l X 1) (b)fcc(lO -(l X l) (c)fcc(110)-(l X 1) (d)hcp(0001)-(l x 1) (e) hcp(l0-10)-(l X 1), usually written as hcp(l010)-(l x 1) (f) bcc(l 10)-(1 x ]) (g) bcc(100)-(l x 1) and (li) bcc(l 11)-(1 x 1). The atomic spheres are drawn with radii that are smaller than touching-sphere radii, in order to give better depth views. The arrows are unit cell vectors. These figures were produced by the software program BALSAC [35]-...
Cehte or firebrick packing for glc columns is often treated with TMCS, DMCS, or other volatile silylating agents (see Table 1) to reduce tailing by polar organic compounds. A chemically bonded methyl siUcone support is stable for temperature programming to 390°C and allows elution of hydrocarbons up to C q (20). [Pg.72]

An Exeel spreadsheet program (PACKED.xls) was developed to determine APs of paeked beds with known parameters. [Pg.500]

One question of chief interest concerns the number of runs that can be run with one individual SEC column. The lifetime of the sorbent itself must be tested as well as the maximum run number for the packed column. Because column packing procedures for SEC columns are rather time-consuming and all SEC columns have to be checked very carefully with respect to performance, very frequent repacking of the column is unreasonable. Therefore, CIP protocols are generally necessary. The CIP protocol should be developed as part of the process validation program. [Pg.237]

Figure 12.7 Cliromatograms of a polycarbonate sample (a) microcolumn SEC ti ace (b) capillary GC ti ace of inti oduced fractions. SEC conditions fused-silica (30 cm X 250 mm i.d.) packed with PL-GEL (50 A pore size, 5 mm particle diameter) eluent, THE at aElow rate of 2.0ml/min injection size, 200 NL UV detection at 254 nm x represents the polymer additive fraction ti ansfeired to EC system (ca. 6 p-L). GC conditions DB-1 column (15m X 0.25 mm i.d., 0.25 pm film thickness) deactivated fused-silica uncoated inlet (5 m X 0.32 mm i.d.) temperature program, 100 °C for 8 min, rising to 350 °C at a rate of 12°C/min flame ionization detection. Peak identification is as follows 1, 2,4-rert-butylphenol 2, nonylphenol isomers 3, di(4-tert-butylphenyl) carbonate 4, Tinuvin 329 5, solvent impurity 6, Ii gaphos 168 (oxidized). Reprinted with permission from Ref. (14). Figure 12.7 Cliromatograms of a polycarbonate sample (a) microcolumn SEC ti ace (b) capillary GC ti ace of inti oduced fractions. SEC conditions fused-silica (30 cm X 250 mm i.d.) packed with PL-GEL (50 A pore size, 5 mm particle diameter) eluent, THE at aElow rate of 2.0ml/min injection size, 200 NL UV detection at 254 nm x represents the polymer additive fraction ti ansfeired to EC system (ca. 6 p-L). GC conditions DB-1 column (15m X 0.25 mm i.d., 0.25 pm film thickness) deactivated fused-silica uncoated inlet (5 m X 0.32 mm i.d.) temperature program, 100 °C for 8 min, rising to 350 °C at a rate of 12°C/min flame ionization detection. Peak identification is as follows 1, 2,4-rert-butylphenol 2, nonylphenol isomers 3, di(4-tert-butylphenyl) carbonate 4, Tinuvin 329 5, solvent impurity 6, Ii gaphos 168 (oxidized). Reprinted with permission from Ref. (14).
Figure 12.18 LC-SFC analysis of mono- and di-laurates of poly (ethylene glycol) ( = 10) in a surfactant sample (a) normal phase HPLC trace (b) chromatogram obtained without prior fractionation (c) chromatogram of fraction 1 (FI) (d) chromatogram of fraction 2 (F2). LC conditions column (20 cm X 0.25 cm i.d.) packed with Shimpak diol mobile phase, w-hexane/methylene chloride/ethanol (75/25/1) flow rate, 4 p.L/min UV detection at 220 nm. SFC conditions fused-silica capillary column (15 m X 0.1 mm i.d.) with OV-17 (0.25 p.m film thickness) Pressure-programmed at a rate of 10 atm/min from 80 atm to 150 atm, and then at arate of 5 atm/min FID detection. Reprinted with permission from Ref. (23). Figure 12.18 LC-SFC analysis of mono- and di-laurates of poly (ethylene glycol) ( = 10) in a surfactant sample (a) normal phase HPLC trace (b) chromatogram obtained without prior fractionation (c) chromatogram of fraction 1 (FI) (d) chromatogram of fraction 2 (F2). LC conditions column (20 cm X 0.25 cm i.d.) packed with Shimpak diol mobile phase, w-hexane/methylene chloride/ethanol (75/25/1) flow rate, 4 p.L/min UV detection at 220 nm. SFC conditions fused-silica capillary column (15 m X 0.1 mm i.d.) with OV-17 (0.25 p.m film thickness) Pressure-programmed at a rate of 10 atm/min from 80 atm to 150 atm, and then at arate of 5 atm/min FID detection. Reprinted with permission from Ref. (23).
Hsu [124] presents equations for directly calculating random packings based on published data and which are adaptable for computer programming and thereby studying the effects of variables. The basic data are essentially a match with Figure 9-21D. [Pg.288]

Packed array—Produces more efficient use of memory, but slower program execution than a regular array. [Pg.124]

For crossflow designs the additional factor of the horizontal depth of packing has to be included in the basic calculations. The accuracy of the design is directly related to the number of calculations in the selection program. Whereas counterflow can be dealt with as a single entity, crossflow has to cope with the changes that occur at every level of pack, both vertically and horizontally. [Pg.526]

A small forerun of 2,4-pentanedione, b p 32-100° (19 mm.), is obtained The purity of the product may be demonstrated by gas chromatography on a 2-ft column packed with silicone gum rubber (F and M Scientific Co, Avondale, Pennsylvania) programmed linearly from 100° to 300° The chromatogram obtained is a single sharp peak The three conceivable impurities, 2,4-pentanedione, 3-butyl 2,4-pentanedione, and 6,8-tridecanedione, would have been observed under these conditions if they had been present. [Pg.94]

The injector temperature should be determined by the nature of the sample and the volume injected, not by the column temperature. When analyzing biological or high-boiling samples, clean the injector body with methanol or other suitable solvent once per week. Install a clean packed injector liner and a new septum, preferably near the end of a workday. Program the column to its maximum temperature, then cool the column and run a test mixture to check the system using standard conditions. [Pg.174]

Advances in materials and new container construction techniques are usually evaluated with one- or two-year test packs. The time required to prove performance of new materials or container constructions slows development programs. However, several laboratory techniques are available which provide a reasonable estimate of container performance. [Pg.16]

Gas chromatography on a 200 cm. by 0.6 cm. column packed with 10% Apiezon L on Chromosorb W (AW, DMCS) using a flame-detector instrument, at a 40 ml./minute helium carrier gas flow rate, gives a trace peak at 9.9 minutes (diphenylmethane), a major peak at 11.7 minutes (1,1-diphenylethane), and a trace peak at 15.4 minutes (1.1-diphenylethanol) when the oven is held at 190° for 10 minutes and then programmed at 10°/minute to 290°. [Pg.9]

The separation was carried out on a column 25 cm long, 4.6 mm in diameter and packed with a Cl8 reversed phase. The mobile phase was programmed from a 93% acetonitrile 7% water to 99% acetonitrile 1% water over a period of 30 minutes. The gradient was linear and the flow... [Pg.182]

The column used for blood serum analysis was 100 cm long, 1 mm in diameter and packed with RP 18 reversed phase having a particle size of 10 pm. A concave gradient program was used to develop the separation over a period of 45 min. at a flow rate of 50 pl/min. The initial solvent was 75% methanol 25% water and the final solvent was pure methanol. [Pg.209]


See other pages where PACK program is mentioned: [Pg.47]    [Pg.17]    [Pg.74]    [Pg.276]    [Pg.342]    [Pg.348]    [Pg.435]    [Pg.419]    [Pg.107]    [Pg.47]    [Pg.17]    [Pg.74]    [Pg.276]    [Pg.342]    [Pg.348]    [Pg.435]    [Pg.419]    [Pg.107]    [Pg.386]    [Pg.121]    [Pg.146]    [Pg.226]    [Pg.108]    [Pg.77]    [Pg.1292]    [Pg.1326]    [Pg.1360]    [Pg.1399]    [Pg.1909]    [Pg.1972]    [Pg.98]    [Pg.55]    [Pg.104]    [Pg.165]    [Pg.236]    [Pg.273]    [Pg.328]    [Pg.124]    [Pg.944]    [Pg.165]    [Pg.345]   


SEARCH



© 2024 chempedia.info