Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxides phosphate, tributyl

Brewer, K.N., Herbst, R.S., Todd, T.A., Christian, J.D. 1998. Zirconium extraction into octyl-(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide and tributyl phosphate. Solvent Extr. IonExch. 16 (4) 1047-1066. [Pg.49]

Such experiments show that oxalate, tartrate, and citrate give fairly strong complexes, and indeed these mixtures do not suffer quite such rapid oxidation as the other systems (57, 70). Stability constants for the complexing of U(III) by acetate, 2-hydroxy-2-methylpropionate, nitriloacetate, trans-cyclohexyl-1,2-diaminotetraacetate, ethylenedi-amine tetraacetate, and diethylenetriamine pentaacetate have been reported, but no pure compounds have been isolated (71). Thiocyanate also accelerates oxidation of the uranium, but the blue complex that is formed can be extracted with triethyl phosphate, tributyl phosphate, or better, trioctyl phosphine oxide the organic extract decomposes only slowly (45, 72). [Pg.74]

Melamine phosphate Molybdenum trioxide Paraffin, chlorinated Pentabromodiphenyl oxide Pentaerythritol Perchloropentacyclodecane Tetrabromobisphenol A bis (allyl ether) Tributoxyethyl phosphate Tributyl phosphate Trichloroethylene Tris (chloropropyl) phosphate Tris (2,3-dibromopropyl) phosphate Zinc borate Zinc molybdate Zinc phosphate flame retardant, plastics, flame retardant, elastomers Zinc sulfide... [Pg.5264]

In 1993, Miura and co-workers studied the use of organotin-alkyl phosphate condensates derived from dibutyl-tin oxide and tributyl phosphate to catalyze the polymerization of propylene oxide (Figure 4). They observed that the polymeric product could be fractionated into benzene-hexane soluble and insoluble fractions. On studying the stereoerrors of the product by NMR, they determined that the insoluble... [Pg.177]

Phosphate ester fluids are the most fire resistant of moderately priced lubricants, are generally excellent lubricants, and are thermally and oxidatively stable up to 135°C (38). Fire-resistant iadustrial hydrauHc fluids represent the largest volume commercial use. AppHcations are made ia air compressors and continue to grow for aircraft use (tributyl and/or an alkyl diaryl ester) and ia hydrauHc control of steam turbiaes ia power generation (ISO 46 esters). [Pg.246]

There are a number of minerals in which thorium is found. Thus a number of basic process flow sheets exist for the recovery of thorium from ores (10). The extraction of mona ite from sands is accompHshed via the digestion of sand using hot base, which converts the oxide to the hydroxide form. The hydroxide is then dissolved in hydrochloric acid and the pH adjusted to between 5 and 6, affording the separation of thorium from the less acidic lanthanides. Thorium hydroxide is dissolved in nitric acid and extracted using methyl isobutyl ketone or tributyl phosphate in kerosene to yield Th(N02)4,... [Pg.35]

For solvent extraction of a tetravalent vanadium oxyvanadium cation, the leach solution is acidified to ca pH 1.6—2.0 by addition of sulfuric acid, and the redox potential is adjusted to —250 mV by heating and reaction with iron powder. Vanadium is extracted from the blue solution in ca six countercurrent mixer—settler stages by a kerosene solution of 5—6 wt % di-2-ethyIhexyl phosphoric acid (EHPA) and 3 wt % tributyl phosphate (TBP). The organic solvent is stripped by a 15 wt % sulfuric acid solution. The rich strip Hquor containing ca 50—65 g V20 /L is oxidized batchwise initially at pH 0.3 by addition of sodium chlorate then it is heated to 70°C and agitated during the addition of NH to raise the pH to 0.6. Vanadium pentoxide of 98—99% grade precipitates, is removed by filtration, and then is fused and flaked. [Pg.392]

Ce(IV) extracts more readily iato organic solvents than do the trivalent Ln(III) ions providing a route to 99% and higher purity cerium compounds. Any Ce(III) content of mixed lanthanide aqueous systems can be oxidi2ed to Ce(IV) and the resultiag solutioa, eg, of nitrates, contacted with an organic extractant such as tributyl phosphate dissolved in kerosene. The Ce(IV) preferentially transfers into the organic phase. In a separate step the cerium can be recovered by reduction to Ce(III) followed by extraction back into the aqueous phase. Cerium is then precipitated and calcined to produce the oxide. [Pg.366]

Many similar hydrocarbon duids such as kerosene and other paraffinic and naphthenic mineral oils and vegetable oils such as linseed oil [8001-26-17, com oil, soybean oil [8001-22-7] peanut oil, tall oil [8000-26-4] and castor oil are used as defoamers. Liquid fatty alcohols, acids and esters from other sources and poly(alkylene oxide) derivatives of oils such as ethoxylated rosin oil [68140-17-0] are also used. Organic phosphates (6), such as tributyl phosphate, are valuable defoamers and have particular utiHty in latex paint appHcations. Another important class of hydrocarbon-based defoamer is the acetylenic glycols (7), such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol which are widely used in water-based coatings, agricultural chemicals, and other areas where excellent wetting is needed. [Pg.463]

The polysulfide base material contains 50—80% of the polyfunctional mercaptan, which is a clear, amber, sympy Hquid polymer with a viscosity at 25°C of 35, 000 Pa-s(= cP), an average mol wt of 4000, a pH range of 6—8, and a ntild, characteristic mercaptan odor. Fillers are added to extend, reinforce, harden, and color the base. They may iaclude siUca, calcium sulfate, ziac oxide, ziac sulfide [1314-98-3] alumina, titanium dioxide [13463-67-7] and calcium carbonate. The high shear strength of the Hquid polymer makes the compositions difficult to mix. The addition of limited amounts of diluents improves the mix without reduciag the set-mbber characteristics unduly, eg, dibutyl phthalate [84-74-2], tricresyl phosphate [1330-78-5], and tributyl citrate [77-94-1]. [Pg.492]

A particularly interesting system for the epoxidation of propylene to propylene oxide, working under pseudo-heterogeneous conditions, was reported by Zuwei and coworkers [61]. The catalyst, which was based on the Venturello anion combined with long-chained alkylpyridinium cations, showed unique solubility properties. I11 the presence of hydrogen peroxide the catalyst was fully soluble in the solvent, a 4 3 mixture of toluene and tributyl phosphate, but when no more oxidant was left, the tungsten catalyst precipitated and could simply be removed from the... [Pg.200]

Feldman and co-workers117) described a procedure for determining as little as 10 ppb of chromium in serum. The normal level is 30 ppb. At least 2 ml of serum are digested or dry ashed and treated with not permanganate to oxidize chromium to chromium(VI). The chromium(VI) is extracted from 3M HC1 into 5 ml MIBK in the cold. This method has been used to measure chromium levels in studies relating this element to diabetes. Thousands of analyses have been performed. Devoto (198) dry ashed 10 ml of blood and extracted the chromium with 5 ml of 10 % tributyl phosphate in MIBK. Recently, Feldman 119) has determined... [Pg.93]

A comparable metabolic fate is documented for the hydraulic fluid tributyl phosphate. Following administration to rats, the Bu groups were oxidized to alcoholic, ketonic, and acidic metabolites. The oxidized Bu groups were then cleaved by enzymatic hydrolysis [103], With 2-ethylhexyl diphenyl phosphate (9.48), an interesting case of regioselectivity was noted during its in vivo metabolism in rats. Indeed, this flame retardant and plasticizer was... [Pg.577]

Fuel. The nuclear fuel cycle starts with mining of the uranium ore, chemical leaching to extract the uranium, and solvent extraction with tributyl phosphate to produce eventually pure uranium oxide. If enriched uranium is required, the uranium is converted to the gaseous uranitim hexafluoride for enrichment by gaseous diffusion or gas centrifuge techniques, after which it is reconverted to uranium oxide. Since the CANDU system uses natural uranium, I will say no more about uranium enrichment although, as I m sure you appreciate, it is a major chemical industry in its own right. [Pg.323]

Finely-ground monazite is treated with a 45% NaOH solution and heated at 138°C to open the ore. This converts thorium, uranium, and the rare earths to their water-insoluble oxides. The insoluble residues are filtered, dissolved in 37% HCl, and heated at 80°C. The oxides are converted into their soluble chlorides. The pH of the solution is adjusted to 5.8 with NaOH. Thorium and uranium are precipitated along with small quantities of rare earths. The precipitate is washed and dissolved in concentrated nitric acid. Thorium and uranium are separated from the rare earths by solvent extraction using an aqueous solution of tributyl phosphate. The two metals are separated from the organic phase by fractional crystallization or reduction. [Pg.929]

In one acid digestion process, monazite sand is heated with 93% sulfuric acid at 210°C. The solution is diluted with water and filtered. Filtrate containing thorium and rare earths is treated with ammonia and pH is adjusted to 1.0. Thorium is precipitated as sulfate and phosphate along with a small fraction of rare earths. The precipitate is washed and dissolved in nitric acid. The solution is treated with sodium oxalate. Thorium and rare earths are precipitated from this nitric acid solution as oxalates. The oxalates are filtered, washed, and calcined to form oxides. The oxides are redissolved in nitric acid and the acid solution is extracted with aqueous tributyl phosphate. Thorium and cerium (IV) separate into the organic phase from which cerium (IV) is reduced to metalhc cerium and removed by filtration. Thorium then is recovered from solution. [Pg.929]

Solvent extraction by tributyl phosphate (TBP) (13, 96), dithizone (20, 71, 72), cupferron (89), thenoyl trifluoroacetone (TTA) (55), diiso-propyl ketone (26), mesityl oxide (92), tri-n-benzylamine and methyl di-n-octylamine (99), diisopropyl and diisobutyl carbinol (100) have all found some application on the trace scale. Acetylaeetone and methyl isobutyl ketone extract milligram amounts of polonium almost quantitatively from hydrochloric acid, but the stable polonium-organic compounds which are formed make it difficult to recover the polonium in a useful form from solutions in these ketones (7). Ion exchange (22, 115, 119) and paper chromatography (44, 87) have also been used for trace scale separations of polonium, but the effects of the intense alpha-radiation on organic com-... [Pg.202]


See other pages where Oxides phosphate, tributyl is mentioned: [Pg.328]    [Pg.633]    [Pg.298]    [Pg.183]    [Pg.2564]    [Pg.23]    [Pg.1255]    [Pg.1273]    [Pg.284]    [Pg.512]    [Pg.782]    [Pg.161]    [Pg.175]    [Pg.303]    [Pg.957]    [Pg.307]    [Pg.314]    [Pg.302]    [Pg.523]    [Pg.596]    [Pg.489]    [Pg.2486]    [Pg.260]    [Pg.280]    [Pg.49]    [Pg.392]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



2.4.5- Tributyl

© 2024 chempedia.info