Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide films layers

Corrosion problems will arise in the use of recycled aluminum. For instance, most recycled aluminum is contaminated with impurity elements such as iron, silicon and copper. The contaminated aluminum usually has low corrosion resistance, because of its poor oxide film layer. As the use of recycled aluminum becomes more widespread, corrosion problems will increase in importance in many industrial fields. These considerations lead to the conclusion that corrosion engineering of aluminum and its alloys will be one of the most important subjects to be studied in the next century. [Pg.668]

Oxide film layers are composed of various kinds of alumina, the oxide of metallic aluminum. The thermodynamic stability of the oxide film is expressed by application of the reaction, or van t Hoff, isotherm. [Pg.668]

Oxide film layer Structure Volume ratio... [Pg.670]

In tenns of an electrochemical treatment, passivation of a surface represents a significant deviation from ideal electrode behaviour. As mentioned above, for a metal immersed in an electrolyte, the conditions can be such as predicted by the Pourbaix diagram that fonnation of a second-phase film—usually an insoluble surface oxide film—is favoured compared with dissolution (solvation) of the oxidized anion. Depending on the quality of the oxide film, the fonnation of a surface layer can retard further dissolution and virtually stop it after some time. Such surface layers are called passive films. This type of film provides the comparably high chemical stability of many important constmction materials such as aluminium or stainless steels. [Pg.2722]

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

C2.18.4.2 DEPOSITION OF OXIDE FILMS BY ATOMIC LAYER PROCESSING... [Pg.2938]

Probably the most important powder property governing the formation of atomic bonds is the surface condition of the particles, especially with respect to the presence of oxide films. If heavy oxide layers are present, they must be penetrated by projections on the particles. This results in only local rather than widespread bonding. A ductile metal such as iron which has a heavy oxide layer may not form as strong or as many bonds as a less ductile metal. [Pg.182]

Hard plating is noted for its excellent hardness, wear resistance, and low coefficient of friction. Decorative plating retains its brilliance because air exposure immediately forms a thin, invisible protective oxide film. The chromium is not appHed directiy to the surface of the base metal but rather over a nickel (see Nickel and nickel alloys) plate, which in turn is laid over a copper (qv) plate. Because the chromium plate is not free of cracks, pores, and similar imperfections, the intermediate nickel layer must provide the basic protection. Indeed, optimum performance is obtained when a controlled but high density (40—80 microcrack intersections per linear millimeter) of microcracks is achieved in the chromium lea ding to reduced local galvanic current density at the imperfections and increased cathode polarization. A duplex nickel layer containing small amounts of sulfur is generally used. In addition to... [Pg.119]

Metals that produce protective oxide layers (such as stainless steels) are especially susceptible to crevice attack. The reduced oxygen concentration in the crevice inhibits repair of the protective oxide film. This is especially true if acidic anions are present, which further retards oxide repair. Stainless steels containing molybdenum are usually less susceptible to attack. [Pg.18]

Aluminum alloys are essentially unaffected by dissolved oxygen in pure water up to 350°F (180°C). Although much of aluminum s corrosion resistance is due to the presence of an adherent oxide film, oxygen is not necessary to form the layer. Direct reaction with water can pro-... [Pg.102]

The important thing about the oxide film is that it acts as a barrier which keeps the oxygen and iron atoms apart and cuts down the rate at which these atoms react to form more iron oxide. Aluminium, and most other materials, form oxide barrier layers in just the same sort of way - but the oxide layer on aluminium is a much more effective barrier than the oxide film on iron is. [Pg.213]

So far, we have been talking in our case study about the advantage of an oxide layer in reducing the rate of metal removal by oxidation. Oxide films do, however, have some disadvantages. [Pg.222]

Because oxides are usually quite brittle at the temperatures encountered on a turbine blade surface, they can crack, especially when the temperature of the blade changes and differential thermal contraction and expansion stresses are set up between alloy and oxide. These can act as ideal nucleation centres for thermal fatigue cracks and, because oxide layers in nickel alloys are stuck well to the underlying alloy (they would be useless if they were not), the crack can spread into the alloy itself (Fig. 22.3). The properties of the oxide film are thus very important in affecting the fatigue properties of the whole component. [Pg.223]

How does galvanising work As Fig. 24.4 shows, the galvanising process leaves a thin layer of zinc on the surface of the steel. This acts as a barrier between the steel and the atmosphere and although the driving voltage for the corrosion of zinc is greater than that for steel (see Fig. 23.3) in fact zinc corrodes quite slowly in a normal urban atmosphere because of the barrier effect of its oxide film. The loss in thickness is typically 0.1 mm in 20 years. [Pg.234]

We said in Chapter 21 that all metals except gold have a layer, no matter how thin, of metal oxide on their surfaces. Experimentally, it is found that for some metals the junction between the oxide films formed at asperity tips is weaker in shear than the metal on which it grew (Fig. 25.4). In this case, sliding of the surfaces will take place in the thin oxide layer, at a stress less than in the metal itself, and lead to a corresponding reduction in x to a value between 0.5 and 1.5. [Pg.244]

The Ni-base alloy surface is exposed to an oxidizing gas, oxide nuclei form, and a continuous oxide film forms (Ni) (Cr203, etc.)- This oxide film is a protective layer. The metal ions diffuse to the surface of the oxide layer and combine with the molten Na2S04 to destroy the protective layer. Ni2S and Cr2S3 results sulfidation) ... [Pg.421]

Although insulators other than aluminum oxide have been tried, aluminum is still used almost universally because it is easy to evaporate and forms a limiting oxide layer of high uniformity. To be restricted, therefore, to adsorption of molecules on aluminum oxide might seem like a disadvantage of the technique, but aluminum oxide is very important in many technical fields. Many catalysts are supported on alumina in various forms, as are sensors, and in addition the properties of the oxide film on aluminum metal are of the greatest interest in adhesion and protection. [Pg.85]

Compared with XPS and AES, the higher surface specificity of SSIMS (1-2 mono-layers compared with 2-8 monolayers) can be useful for more precise determination of the chemistry of an outer surface. Although from details of the 01s spectrum, XPS could give the information that OH and oxide were present on a surface, and from the Cls spectrum that hydrocarbons and carbides were present, only SSIMS could be used to identify the particular hydroxide or hydrocarbons. In the growth of oxide films for different purposes (e.g. passivation or anodization), such information is valuable, because it provides a guide to the quality of the film and the nature of the growth process. [Pg.96]

Clean metallic aluminum is extremely reactive. Even exposure to air at ordinary temperatures is sufficient to promote immediate oxidation. This reactivity is self-inhibiting, however, which determines the general corrosion behavior of aluminum and its alloys due to the formation of a thin, inert, adherent oxide film. In view of the great importance of the surface film, it can be thickened by anodizing in a bath of 15% sulfuric acid (H2SO4) solution or by cladding with a thin layer of an aluminum alloy containing 1 % zinc. [Pg.90]

There are various theories on how passive films are formed however, there are two commonly accepted theories. One theory is called the oxide film theory and states that the passive film is a diffusion-barrier layer of reaction products (i.e., metal oxides or other compounds). The barriers separate the metal from the hostile environment and thereby slow the rate of reaction. Another theory is the adsorption theory of passivity. This states that the film is simply adsorbed gas that forms a barrier to diffusion of metal ions from the substrata. [Pg.1268]

The uniformity of film thickness is dependent upon temperature and pressure. The nucleation rate rises with pressure, such that at pressures above atmospheric the high rate of nucleation can lead to comparatively uniform oxide films, while increase in temperature reduces the density of oxide nuclei, and results in non-uniformity. Subsequently, lateral growth of nuclei over the surface is faster than the rate of thickening until uniform coverage is attained, when the consolidated film grows as a continuous layer ... [Pg.24]

Formation of the first layer (a monolayer) of passivating oxide film on a denuded metal surface occurs very simply by the loss of protons from the adsorbed intermediate oxidation products, such intermediates being common to both dissolution and passivation processes . Thus for example, the first oxidative step in the anodic oxidation of nickel is the formation of the unstable adsorbed intermediate NiOH by... [Pg.127]


See other pages where Oxide films layers is mentioned: [Pg.322]    [Pg.282]    [Pg.322]    [Pg.282]    [Pg.440]    [Pg.2723]    [Pg.2725]    [Pg.2728]    [Pg.2938]    [Pg.226]    [Pg.226]    [Pg.164]    [Pg.368]    [Pg.331]    [Pg.232]    [Pg.222]    [Pg.80]    [Pg.44]    [Pg.247]    [Pg.22]    [Pg.119]    [Pg.126]    [Pg.127]    [Pg.131]    [Pg.131]    [Pg.134]    [Pg.137]    [Pg.284]    [Pg.286]    [Pg.288]   
See also in sourсe #XX -- [ Pg.334 , Pg.335 ]




SEARCH



Iron oxides passive film layer

Outer Hydrous Layer on the Passive Oxide Film

Oxidants layer

Oxidation films

Oxide film layers, aluminum-based alloys

Oxide films atomic layer deposition

Oxide layer

Oxides layered

Thin oxide film formation, metal protective layer

© 2024 chempedia.info