Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative stability phosphine oxide

Cationic P compounds exhibit several modes of reactivity, including coordination to Lewis acids oxidation by acids, water, and alkyl chlorides and substitution of the stabilizing phosphine ligands by stronger donors (Scheme 17). Some of these P and As cations have also been shown to be useful sources of P and As ions that provide zirconium complexes (12) containing unique square-planar Pn environments (equation 22). ... [Pg.5843]

Herrmann emphasized that aryl chlorides are unsuitable as arylating agents in Heck reactions primarily because P—C cleavage and loss of Pd(0)-stabilizing phosphines ultimately occur, leading to catalyst deactivation and palladium black formation, rather than resistance of aryl chlorides to oxidative addition.f " ... [Pg.1138]

The chemistry of technetium(II) and rhenium(II) is meagre and mainly confined to arsine and phosphine complexes. The best known of these are [MCl2(diars)2], obtained by reduction with hypophosphite and Sn respectively from the corresponding Tc and Re complexes, and in which the low oxidation state is presumably stabilized by n donation to the ligands. This oxidation state, however, is really best typified by manganese for which it is the most thoroughly studied and, in aqueous solution, by far the most... [Pg.1058]

The mechanism by which this low oxidation state is stabilized for this triad has been the subject of some debate. That it is not straightforward is clear from the fact that, in contrast to nickel, palladium and platinum require the presence of phosphines for the formation of stable carbonyls. For most transition metals the TT-acceptor properties of the ligand are thought to be of considerable importance and there is... [Pg.1166]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

While the chemistry of alkyl and allylic sulfoxide anions is similar to that of phosphine oxides, phosphinates and sulfone stabilized anions (Sections 1.5.2.2.1 -2), the situation is further complicated by the additional stereogenic center at sulfur. Therefore in all cases, asymmetric induction may arise from the stereocenter at sulfur. [Pg.924]

Within the osmium complexes in oxidation states (II-IV) [11,12] the stability of the +4 oxidation state becomes more important. Ammine and tertiary phosphine complexes have been selected for detailed examination. [Pg.54]

The best characterized complexes [146] are prepared as shown in Figure 2.83. In synthesis (a) the first step involves demethylation of both ligands only one phosphine chelates, demonstrating the stability of square planar d8 iridium(I) on oxidation, the CO is displaced (as C02) and both ligands chelate. [Pg.145]

Calcium-binding proteins, 6, 564, 572, 596 intestinal, 6, 576 structure, 6, 573 Calcium carbonate calcium deposition as, 6, 597 Calcium complexes acetylacetone, 2, 372 amides, 2,164 amino acids, 3, 33 arsine oxides, 3, 9 biology, 6, 549 bipyridyl, 3, 13 crown ethers, 3, 39 dimethylphthalate, 3, 16 enzyme stabilization, 6, 549 hydrates, 3, 7 ionophores, 3, 66 malonic acid, 2, 444 peptides, 3, 33 phosphines, 3, 9 phthalocyanines, 2,863 porphyrins, 2, 820 proteins, 2, 770 pyridine oxide, 3,9 Schiff bases, 3, 29 urea, 3, 9... [Pg.97]

Phosphine, methyl-n-propylphenyl-rhodium complexes asymmetric hydrogenation, 6,250 Phosphine, neomenthyldiphenyl-rhodium complexes asymmetric hydrogenation, 6,250 Phosphine, phenyl-, 2,992 Phosphine, o-phenylenebis(dimethyl-, 2,993 Phosphine, p-phenylenebis(diphenyl-, 2,993 Phosphine, seleno-metal complexes, 2,664 bidentatc, 2, 664 Phosphine, triaryl-photographic stabilizer, 6,103 Phosphine, tributyl-, 2, 992 oxide... [Pg.193]

Primary phosphines (R-PHj) are an important ciass of compounds in organophosphorus chemistry. Aithough discovered over a century ago, their chemistry and appiications have gained prominence in recent years. This review discusses recent deveiopments on synthesis, moiecuiar structure, properties, and appiications of primary phosphines. In particular, discussions on synthesis and properties emphasize recent results from our laboratory on the chemical architecture of amide, thioether, and carboxylate functionalized primary bisphos-phines. The utility of bromo- and aminopropyl phosphines (X(CH2)3PH2 X=Br or NH2) as building blocks to produce designer primary phosphines that display exceptional oxidative stability is described. The review also discusses the utility of carboxylate functionalized primary phosphines for incorporation on to peptides and their potential applications in catalysis and biomedicine. [Pg.121]

The bisphosphonate - upon reduction with lithiumaluminum hydride in ether at 0°C - produced the amide functionalized primary bisphosphine (1) in good yields [45]. This reaction proceeded to reduce the amide group in 1 to produce the amine functionaUzed primary bisphosphine (2) in <5% yields. The amido bisprimary phosphine 1 is an air stable crystalline solid whereas the amine compound 2 is an oxidatively stable liquid. Separation of 1 and 2 in pure forms was achieved using coliunn chromatography. The amidic bisprimary phosphine 1 was crystallized from chloroform and exhibits remarkable stability not only in the solid state but also in solution as well. The crystal structure of the air stable primary his-phosphine 1 as shown in Fig. 1 is unprecedented to date. [Pg.125]

These thioether functionalized primary bisphosphines 9 and 10 showed modest oxidative stabilities and have found applications as novel precursors in the development of functionalized water-soluble phosphines via formylation reactions across P-H bonds (see below) [47]. [Pg.127]

In fact, the primary bisphosphines 1,10,16, and 19 (Fig. 3) are air stable solids demonstrating exceptional oxidative stabilities. Recently, a primary bisphosphine 20 produced by dimerization reaction of anthracenyl primary phosphine has been shown to possess good oxidative stability [29]. [Pg.131]

Indeed, these reactions proceed at 25 °C in ethanol-aqueous media in the absence of transition metal catalysts. The ease with which P-H bonds in primary phosphines can be converted to P-C bonds, as shown in Schemes 9 and 10, demonstrates the importance of primary phosphines in the design and development of novel organophosphorus compounds. In particular, functionalized hydroxymethyl phosphines have become ubiquitous in the development of water-soluble transition metal/organometallic compounds for potential applications in biphasic aqueous-organic catalysis and also in transition metal based pharmaceutical development [53-62]. Extensive investigations on the coordination chemistry of hydroxymethyl phosphines have demonstrated unique stereospe-cific and kinetic propensity of this class of water-soluble phosphines [53-62]. Representative examples outlined in Fig. 4, depict bidentate and multidentate coordination modes and the unique kinetic propensity to stabilize various oxidation states of metal centers, such as Re( V), Rh(III), Pt(II) and Au(I), in aqueous media [53 - 62]. Therefore, the importance of functionalized primary phosphines in the development of multidentate water-soluble phosphines cannot be overemphasized. [Pg.133]

Functionally active preformed primary phosphines (e.g.,H2N(CH2)3PH2 3 or Br(CH2)3PH2 17) will provide important building blocks to functionaUze sim-ple/complex molecules with primary phosphine functionaUties. The user friendl/ nature of the air stable primary bisphosphines (e.g., 1,10,16,18-20) will open up new realms of exploratory research that utilize primary phosphines. It is also conceivable that the high oxidative stability and the ease with which primary phosphines can be incorporated on chiral backbones or peptides provide new opportunities for their appHcations in catalysis and biomedicine. [Pg.139]

Kurosawa et al. have reported that the relative stability of the ti-allyl palladium thi-olate 39 and the allyl sulfide/Pd(0) was highly ligand dependent. In the presence of PPhs or P(OMe)3 the stability was in favor of reductive elimination (Eq. 7.28), while in the presence of olefin or in the absence of any additional ligand the stability was in favor of oxidative addition (Eq. 7.29) [38]. This can explain the reactivity of the n-allyl palladium thiolate 33 and 38 proposed in Eq. (7.24) and path (c) of Scheme 7-10. The complex 33 should react with PhSH, but C-S bond-forming reductive elimination has to be suppressed in order to obtain the desired product 32. On the other hand, the complex 38 requires the phosphine ligand to promote the C-S bond-forming reductive elimination. [Pg.228]


See other pages where Oxidative stability phosphine oxide is mentioned: [Pg.785]    [Pg.5842]    [Pg.2902]    [Pg.40]    [Pg.386]    [Pg.92]    [Pg.177]    [Pg.179]    [Pg.184]    [Pg.281]    [Pg.1055]    [Pg.1129]    [Pg.1130]    [Pg.1134]    [Pg.173]    [Pg.173]    [Pg.210]    [Pg.444]    [Pg.233]    [Pg.11]    [Pg.69]    [Pg.121]    [Pg.125]    [Pg.130]    [Pg.130]    [Pg.181]    [Pg.59]    [Pg.316]    [Pg.54]    [Pg.306]    [Pg.37]   
See also in sourсe #XX -- [ Pg.119 ]




SEARCH



OXIDATION OXIDATIVE STABILITY

Oxidative stability

Oxidative stabilizers

Phosphine oxides

Phosphine oxides oxidation

Stability oxides

Stabilizing phosphines

© 2024 chempedia.info