Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation to maleic anhydride

Process Technology Evolution. Maleic anhydride was first commercially produced in the early 1930s by the vapor-phase oxidation of benzene [71-43-2]. The use of benzene as a feedstock for the production of maleic anhydride was dominant in the world market well into the 1980s. Several processes have been used for the production of maleic anhydride from benzene with the most common one from Scientific Design. Small amounts of maleic acid are produced as a by-product in production of phthaHc anhydride [85-44-9]. This can be converted to either maleic anhydride or fumaric acid. Benzene, although easily oxidized to maleic anhydride with high selectivity, is an inherently inefficient feedstock since two excess carbon atoms are present in the raw material. Various compounds have been evaluated as raw material substitutes for benzene in production of maleic anhydride. Fixed- and fluid-bed processes for production of maleic anhydride from the butenes present in mixed streams have been practiced commercially. None of these... [Pg.453]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

Like propane, n-hutane is mainly obtained from natural gas liquids. It is also a hy-product from different refinery operations. Currently, the major use of n-hutane is to control the vapor pressure of product gasoline. Due to new regulations restricting the vapor pressure of gasolines, this use is expected to he substantially reduced. Surplus n-butane could be isomerized to isobutane, which is currently in high demand for producing isobutene. Isobutene is a precursor for methyl and ethyl tertiary butyl ethers, which are important octane number boosters. Another alternative outlet for surplus n-butane is its oxidation to maleic anhydride. Almost all new maleic anhydride processes are based on butane oxidation. [Pg.174]

The reactivity of vanadyl pyrophosphate (VO)2P207, catalyst for n-butane oxidation to maleic anhydride, was investigated under steady and unsteady conditions, in order to obtain iirformation on the status of the active surface in reaction conditions. Specific treatments of hydrolysis and oxidation were applied in order to modify the characteristics of the surface layer of the catalyst, and then the unsteady catalytic performance was followed along with the reaction time, until the steady original behavior was restored. It was found that the transformations occurring on the vanadyl pyrophosphate surface depend on the catalyst characteristics (i.e., on the PfV atomic ratio) and on the reaction conditions. [Pg.485]

The industrial catalyst for n-butane oxidation to maleic anhydride (MA) is a vanadium/phosphoras mixed oxide, in which bulk vanadyl pyrophosphate (VPP) (VO)2P207 is the main component. The nature of the active surface in VPP has been studied by several authors, often with the use of in situ techniques (1-3). While in all cases bulk VPP is assumed to constitute the core of the active phase, the different hypotheses concern the nature of the first atomic layers that are in direct contact with the gas phase. Either the development of surface amorphous layers, which play a direct role in the reaction, is invoked (4), or the participation of specific planes contributing to the reaction pattern is assumed (2,5), the redox process occurring reversibly between VPP and VOPO4. [Pg.485]

The solids analysis described above can be taken to yet another level by correlating the color measurement to chemical properties. An excellent model system is vanadium pyrophosphate (VPO), which is a well-known catalyst for butane oxidation to maleic anhydride. During the synthesis of the catalyst precursor, solid V2O5 particles are dispersed in a mixture of benzyl alcohol and i-butanol. In this slurry phase, the vanadium is partly reduced. Addition of phosphoric acid leads to a further reduction and the formation of the VPO structure. With a diffuse reflectance (DR) UV-vis probe by Fiberguide Ind., the surface of the suspended solid particles could be monitored during this slurry reaction. Four points can be noted from Figure 4.4 ... [Pg.97]

It is now considered, by most groups working in this area, that vanadyl pyrophosphate (VO)2P207 is the central phase of the Vanadium Phosphate system for butane oxidation to maleic anhydride (7 ). However the local structure of the catalytic sites is still a subject of discussion since, up to now, it has not been possible to study the characteristics of the catalyst under reaction conditions. Correlations have been attempted between catalytic performances obtained at variable temperature (380-430 C) in steady state conditions and physicochemical characterization obtained at room temperature after the catalytic test, sometimes after some deactivation of the catalyst. As a consequence, this has led to some confusion as to the nature of the active phase and of the effective sites. (VO)2P207, V (IV) is mainly detected by X-Ray Diffraction. [Pg.217]

However, the use of techniques which analyze both the short and the long range orders of the VPO materials, like RED of X-Rays (2 ), and W MAS-NMR (3,4 ), showed the possible participation of some V (V) structures to the reaction. Previously, there has been some ambiguity insofar as these structures should be a consequence of the reoxidation of the starting VOHPO4, 0.5 H2O precursor or of the basic (VO)2P207 matrix and hence do not intervene directly in the reaction mechanism of butane oxidation to maleic anhydride. The possible role of a limited amount of V(V) sites to control the selectivity to maleic anhydride was previously postulated (5). [Pg.218]

With the aim to study the characteristics of VPO catalysts in the course of butane oxidation to maleic anhydride together with a simultaneous evaluation of the catalytic performance, we have used Raman spectroscopy which is a very sensitive probe for determining the presence of V0P04-like entities together with (VO)2P207. An in situ Laser Raman Spectroscopy (LRS) cell was built in our laboratory (6). In the corresponding publication (6 ), the preparation and the characterization by XRD, Ip... [Pg.218]

In this communication, we compare VPO catalysts which differ by their conditions of preparation, considering both their LRS spectra registered under reaction conditions and the corresponding catalytic results. LRS data are discussed in relation with results for n-butane oxidation to maleic anhydride. [Pg.218]

This study has resulted in interesting informations concerning the active sites of the VPO catalysts for n-butane oxidation to maleic anhydride being obtained. The study of VPO catalysts in the course of n-butane oxidation by an in-situ Raman cell has shown... [Pg.228]

However, the maximum selectivity for butene oxidation to maleic anhydride occurs at a P/V ratio of 2/1, where the concentrations of O" and 02 are much reduced. This was taken to indicate that the predominant role of 02 and 0 in this system is in nonselective oxidation. [Pg.49]

The present chapter will primarily focus on oxidation reactions over supported vanadia catalysts because of the widespread applications of these interesting catalytic materials.5 6,22 24 Although this article is limited to well-defined supported vanadia catalysts, the supported vanadia catalysts are model catalyst systems that are also representative of other supported metal oxide catalysts employed in oxidation reactions (e.g., Mo, Cr, Re, etc.).25 26 The key chemical probe reaction to be employed in this chapter will be methanol oxidation to formaldehyde, but other oxidation reactions will also be discussed (methane oxidation to formaldehyde, propane oxidation to propylene, butane oxidation to maleic anhydride, CO oxidation to C02, S02 oxidation to S03 and the selective catalytic reduction of NOx with NH3 to N2 and H20). This chapter will combine the molecular structural and reactivity information of well-defined supported vanadia catalysts in order to develop the molecular structure-reactivity relationships for these oxidation catalysts. The molecular structure-reactivity relationships represent the molecular ingredients required for the molecular engineering of supported metal oxide catalysts. [Pg.38]

The TOFs for methanol oxidation to formaldehyde (95-99% selectivity), butane oxidation to maleic anhydride and C0/C02 (30% maleic anhydride selectivity) and S02 oxidation to SO3 are independent of surface vanadia coverage. This observation suggests that these oxidation reactions do not depend on the surface concentration of bridging V-O-V bonds since the reaction TOFs do not correlate with the surface density of bridging V-O-V bonds. Furthermore, the constant TOFs with surface vanadia coverage suggest that only one surface vanadia site is required for the activation of these molecules during the oxidation reactions. [Pg.40]

Direct evidence about the first step of activation of butane was obtained on a V-P oxide catalyst in the butane oxidation to maleic anhydride based on deuterium kinetic isotope effect (34). It was found that when a butane molecule was labeled with deuterium at the second and third carbon, a deuterium kinetic isotope effect of 2 was observed. No kinetic isotope effect was observed, however, if the deuterium label was at the first or fourth carbon. By comparing the observed and theoretical kinetic isotope effects, it was concluded that the first step of butane activation on this catalyst was the cleavage of a secondary C—H bond, and this step was the rate-limiting step. [Pg.17]

VPO catalyst, they are assumed to be V2Ok units made up of pairs of distorted edge-sharing V05 square pyramids. The assumption of these active sites, especially for the VPO catalyst, was discussed in detail in Ref. 56, in view of the fact that the most selective VPO catalyst for butane oxidation to maleic anhydride contained a slight excess of phosphorus over the stoichiometric ratio for vanadyl pyrophosphate, the phosphorus was concentrated on the surface (57-61), and the average vanadium valence of the catalyst under reaction conditions was about 4.1 (57, 58). [Pg.29]

Unlike propene oxidation to acrolein or butene oxidation to maleic anhydride, oxygen is not incorporated into the selective oxidation product butadiene. However, water is formed together with butadiene, and it could conceivably be formed with lattice oxygen. There have been no isotopelabeling experiments to elucidate this. Similarly, it is not known whether the formation of any of the combustion products involves lattice oxygen. [Pg.177]

A New Process for n-Butane Oxidation to Maleic Anhydride Using a Circulating Fluidized Bed Reactor. In Circulating Fluidized Bed Technology TV. Ed. A. A. Avidan. New York AlChE Publications. [Pg.455]

This section shows, for four examples of increasing complexity, how precipitates are formed and how the properties of the precipitates are controlled to produce a material suitable for catalytic applications. The first two examples comprise silica, which is primarily used as support material and is usually formed as an amorphous solid, and alumina, which is also used as a catalytically active material, and which can be formed in various modifications with widely varying properties as pure precipitated compounds. The other examples are the results of coprecipitation processes, namely Ni/ AI2O3 which can be prepared by several pathways and for which the precipitation of a certain phase determines the reduction behavior and the later catalytic properties, and the precipitation of (VOjHPCU 0.5 H2O which is the precursor of the V/P/O catalyst for butane oxidation to maleic anhydride, where even the formation of a specific crystallographic face with high catalytic activity has to be controlled. [Pg.42]

Technology status Integrated process technology successfully demonstrated in a large pilot plant at Mitsubishi Chemical Corp., Japan, for butane oxidation to maleic anhydride. Commercial plant designs are in progress... [Pg.66]


See other pages where Oxidation to maleic anhydride is mentioned: [Pg.202]    [Pg.59]    [Pg.97]    [Pg.230]    [Pg.84]    [Pg.217]    [Pg.246]    [Pg.41]    [Pg.38]    [Pg.517]    [Pg.204]    [Pg.294]    [Pg.41]    [Pg.502]    [Pg.303]    [Pg.115]    [Pg.385]    [Pg.3]    [Pg.19]    [Pg.95]    [Pg.48]    [Pg.65]    [Pg.69]    [Pg.267]   
See also in sourсe #XX -- [ Pg.30 , Pg.137 , Pg.301 , Pg.302 , Pg.303 , Pg.306 ]




SEARCH



Anhydrides maleic anhydride

Butane Selective Oxidation to Maleic Anhydride Over VPO

Maleic anhydride

Maleic anhydride, oxidation

Proposed Steps in n-Butane Oxidation to Maleic Anhydride

To anhydrides

© 2024 chempedia.info