Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water oxidation reactions

Catalytic gas purification of reformate containing significantly more than 1% of carbon monoxide is performed by the water-gas shift reaction. Frequently, especially in the case of partial oxidation reactions, water is added to the reformate to shift the equilibrium of the reaction in the desired direction ... [Pg.335]

It is of course essential that the ionic liquid is stable in the presence of the oxidant, which excludes ionic liquids with metallic anions such as chlorocuprates. In many oxidation reactions water is present as co-solvent, reagent or it is produced in the course of the reaction, which further eliminates the use of chloroaluminates. However, less care has to be taken with respect to drying the ionic liquid compared to other catalytic reactions when aqueous oxidants are used. Common imidazolium and ammonium based ionic liquids are neither water-nor oxygen sensitive and thus well suited and may even act as co-catalyst in the oxidation reaction. Some anions like [BF4] and [PF6] are, however, susceptible towards hydrolysis. Where the ionic liquid is highly viscous, a co-solvent such as dichloromethane might be necessary to afford acceptable reaction rates, especially when molecular oxygen is used as reagent. [Pg.91]

Inhibition by Water and CO2 - The products of the methane oxidation reaction, water and carbon dioxide, may also act as rate inhibitors. Water is formed not only by the methane oxidation reaction, but it is already present at high concentrations (up to 15%) in typical exhausts. It is generally agreed that the inhibiting effect of water is more severe than that of CO2. The reaction order with respect to H2O has been found to be — 1, while that for CO2 depends upon concentration. Below 0.5 vol%, CO2 exhibited no effect, but at higher concentrations it strongly suppressed the rate with an order dependency of —2. However, other studies have found a weak correlation or no inhibition above a CO2 concentration of 10%. ... [Pg.28]

The presence of chloric(I) acid makes the properties of chlorine water different from those of gaseous chlorine, just as aqueous sulphur dioxide is very different from the gas. Chloric(I) acid is a strong oxidising agent, and in acid solution will even oxidise sulphur to sulphuric acid however, the concentration of free chloric(I) acid in chlorine water is often low and oxidation reactions are not always complete. Nevertheless when chlorine bleaches moist litmus, it is the chloric(I) acid which is formed that produces the bleaching. The reaction of chlorine gas with aqueous bromide or iodide ions which causes displacement of bromine or iodine (see below) may also involve the reaction... [Pg.323]

Typical nucleophiles known to react with coordinated alkenes are water, alcohols, carboxylic acids, ammonia, amines, enamines, and active methylene compounds 11.12]. The intramolecular version is particularly useful for syntheses of various heterocyclic compounds[l 3,14]. CO and aromatics also react with alkenes. The oxidation reactions of alkenes can be classified further based on these attacking species. Under certain conditions, especially in the presence of bases, the rr-alkene complex 4 is converted into the 7r-allylic complex 5. Various stoichiometric reactions of alkenes via 7r-allylic complex 5 are treated in Section 4. [Pg.21]

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

The intramolecular oxidative earbonylation has wide synthetie applieation. The 7-lactone 247 is prepared by intramolecular oxycarbonylation of the alke-nediol 244 with a stoichiometric amount of Pd(OAc)2 under atmospheric pres-sure[223]. The intermediate 245 is formed by oxypalladation, and subsequent CO insertion gives the acylpalladium 246. The oxycarbonylation of alkenols and alkanediols can be carried out with a catalytic amount of PdCl2 and a stoichiometric amount of CuCb, and has been applied to the synthesis of frenolicin(224] and frendicin B (249) from 248[225]. The carbonylation of the 4-penten-l,3-diol 250, catalyzed by PdCl2 and CuCl2, afforded in the c -3-hydroxytetrahydrofuran-2-aeetie acid lactone 251[226J. The cyclic acetal 253 is prepared from the dienone 252 in the presence of trimethyl orthoformate as an accepter of water formed by the oxidative reaction[227]. [Pg.54]

At still higher temperatures, when sufficient oxygen is present, combustion and "hot" flames are observed the principal products are carbon oxides and water. Key variables that determine the reaction characteristics are fuel-to-oxidant ratio, pressure, reactor configuration and residence time, and the nature of the surface exposed to the reaction 2one. The chemistry of hot flames, which occur in the high temperature region, has been extensively discussed (60-62) (see Col ustion science and technology). [Pg.338]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

An important side reaction in all free-radical nitrations is reaction 10, in which unstable alkyl nitrites are formed (eq. 10). They decompose to form nitric oxide and alkoxy radicals (eq. 11) which form oxygenated compounds and low molecular weight alkyl radicals which can form low molecular weight nitroparaffins by reactions 7 or 9. The oxygenated hydrocarbons often react further to produce even lighter oxygenated products, carbon oxides, and water. [Pg.35]

Conversion of Ammonia. Ammonia [7664 1-7] mixed with air and having an excess of oxygen, is passed over a platinum catalyst to form nitric oxide and water (eq. 10). The AH g = —226 kJ/mol of NH consumed (—54 kcal/mol). Heats of reaction have been derived from heats of... [Pg.42]

Absorption of Nitrogen Oxides. There have been numerous studies and reports on the reaction mechanisms and rate-controlling steps for the absorption of nitrogen oxides into water (43—46). The overall reaction to form nitric acid may be represented by equation 14, where Ai/298 K kJ/mol ofNO consumed. [Pg.43]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

The rates of hydrolysis for the peroxophosphoric acids are more rapid than the corresponding reactions of the peroxosulfiiric acids. The peroxodiphosphate ion is extremely resistant to decomposition by oxidation of water ... [Pg.94]

Oxidation of cumene to cumene hydroperoxide is usually achieved in three to four oxidizers in series, where the fractional conversion is about the same for each reactor. Fresh cumene and recycled cumene are fed to the first reactor. Air is bubbled in at the bottom of the reactor and leaves at the top of each reactor. The oxidizers are operated at low to moderate pressure. Due to the exothermic nature of the oxidation reaction, heat is generated and must be removed by external cooling. A portion of cumene reacts to form dimethylbenzyl alcohol and acetophenone. Methanol is formed in the acetophenone reaction and is further oxidized to formaldehyde and formic acid. A small amount of water is also formed by the various reactions. The selectivity of the oxidation reaction is a function of oxidation conditions temperature, conversion level, residence time, and oxygen partial pressure. Typical commercial yield of cumene hydroperoxide is about 95 mol % in the oxidizers. The reaction effluent is stripped off unreacted cumene which is then recycled as feedstock. Spent air from the oxidizers is treated to recover 99.99% of the cumene and other volatile organic compounds. [Pg.288]

Analysis for Poly(Ethylene Oxide). Another special analytical method takes advantage of the fact that poly(ethylene oxide) forms a water-insoluble association compound with poly(acryhc acid). This reaction can be used in the analysis of the concentration of poly(ethylene oxide) in a dilute aqueous solution. Ereshly prepared poly(acryhc acid) is added to a solution of unknown poly(ethylene oxide) concentration. A precipitate forms, and its concentration can be measured turbidimetricaHy. Using appropriate caUbration standards, the precipitate concentration can then be converted to concentration of poly(ethylene oxide). The optimum resin concentration in the unknown sample is 0.2—0.4 ppm. Therefore, it is necessary to dilute more concentrated solutions to this range before analysis (97). Low concentrations of poly(ethylene oxide) in water may also be determined by viscometry (98) or by complexation with KI and then titration with Na2S202 (99). [Pg.343]

Propylene oxide is also produced in Hquid-phase homogeneous oxidation reactions using various molybdenum-containing catalysts (209,210), cuprous oxide (211), rhenium compounds (212), or an organomonovalent gold(I) complex (213). Whereas gas-phase oxidation of propylene on silver catalysts results primarily in propylene oxide, water, and carbon dioxide as products, the Hquid-phase oxidation of propylene results in an array of oxidation products, such as propylene oxide, acrolein, propylene glycol, acetone, acetaldehyde, and others. [Pg.141]

Bubble columns in series have been used to establish the same effective mix of plug-flow and back-mixing behavior required for Hquid-phase oxidation of cyclohexane, as obtained with staged reactors in series. WeU-mixed behavior has been established with both Hquid and air recycle. The choice of one bubble column reactor was motivated by the need to minimize sticky by-products that accumulated on the walls (93). Here, high air rate also increased conversion by eliminating reaction water from the reactor, thus illustrating that the choice of a reactor system need not always be based on compromise, and solutions to production and maintenance problems are complementary. Unlike the Hquid in most bubble columns, Hquid in this reactor was intentionally weU mixed. [Pg.524]

Tubular Fixed-Bed Reactors. Bundles of downflow reactor tubes filled with catalyst and surrounded by heat-transfer media are tubular fixed-bed reactors. Such reactors are used most notably in steam reforming and phthaUc anhydride manufacture. Steam reforming is the reaction of light hydrocarbons, preferably natural gas or naphthas, with steam over a nickel-supported catalyst to form synthesis gas, which is primarily and CO with some CO2 and CH. Additional conversion to the primary products can be obtained by iron oxide-catalyzed water gas shift reactions, but these are carried out ia large-diameter, fixed-bed reactors rather than ia small-diameter tubes (65). The physical arrangement of a multitubular steam reformer ia a box-shaped furnace has been described (1). [Pg.525]

Stability. In order to have maximum effectiveness over long periods of time, an antioxidant should be stable upon exposure to heat, light, oxygen, water, etc. Many antioxidants, especially in the presence of an impurity when exposed to light and oxygen, are subject to oxidation reactions with the development of colored species. Alkylated diphenyl amines are least susceptible and the -phenylenediamine derivatives the most susceptible to direct oxidation. [Pg.246]

Oxidation. AH inorganic siUcon hydrides are readily oxidized. Silane and disilane are pyrophoric in air and form siUcon dioxide and water as combustion products thus, the soot from these materials is white. The activation energies of the reaction of silane with molecular and atomic oxygen have been reported (20,21). The oxidation reaction of dichlorosilane under low pressure has been used for the vapor deposition of siUcon dioxide (22). [Pg.22]

Silver sulfate has been described as a catalyst for the reduction of aromatic hydrocarbons to cyclohexane derivatives (69). It is also a catalyst for oxidation reactions, and as such has long been recommended for the oxidation of organic materials during the deterrnination of the COD of wastewater samples (70,71) (see WASTES, INDUSTRIAL WATER, INDUSTRIAL WATERTTEATI NT). [Pg.92]

Water-dispersible resins contain carboxyhc groups which are neutralized using base or amine compounds. This solubilizes the resin in solution and also promotes pigment wetting. Film formation occurs by the evaporation of volatiles foUowed by cross-linking through ambient cure oxidative reactions or elevated temperature reactions. Solvents, most commonly glycol ethers, are used to promote film formation and improve film quahty. [Pg.279]

In another process, strontium sulfate can be converted to strontium carbonate direcdy by a metathesis reaction wherein strontium sulfate is added to a solution of sodium carbonate to produce strontium carbonate and leave sodium sulfate in solution (6). Prior to this reaction, the finely ground ore is mixed with hydrochloric acid to convert the calcium carbonates and iron oxides to water-soluble chlorides. [Pg.474]

The total antioxidant activity of teas and tea polyphenols in aqueous phase oxidation reactions has been deterrnined using an assay based on oxidation of 2,2 -azinobis-(3-ethylbenzothiazoline-sulfonate) (ABTS) by peroxyl radicals (114—117). Black and green tea extracts (2500 ppm) were found to be 8—12 times more effective antioxidants than a 1-mAf solution of the water-soluble form of vitamin E, Trolox. The most potent antioxidants of the tea flavonoids were found to be epicatechin gallate and epigallocatechin gallate. A 1-mAf solution of these flavanols were found respectively to be 4.9 and 4.8 times more potent than a 1-mAf solution of Trolox in scavenging an ABT radical cation. [Pg.373]

Reaction vessels for supercritical water oxidation must be highly corrosion resistant because of the aggressive nature of supercritical water and oxidation reaction products at extreme temperatures and pressures. Supercritical oxidation of PCBs and some chlorinated hydrocarbons can be difficult... [Pg.165]

A more concentrated solution of HOBr can be prepared by filtration of one of the above solutions and distillation in vacuum. Or the mercuric oxide reaction can be carried out in Freon 11 without water, yielding a solution of bromine monoxide which is filtered and hydrolyzed. Hypobromous acid is slightly ionized its dissociation constant at 25°C is 2 x 10 . ... [Pg.293]

The oxidation reaction between butadiene and oxygen and water in the presence of CO2 or SO2 produces 1,4-butenediol. The catalysts consist of iron acetylacetonate and LiOH (99). The same reaction was also observed at 90°C with Group (VIII) transition metals such as Pd in the presence of I2 or iodides (100). The butenediol can then be hydrogenated to butanediol [110-63-4]. In the presence of copper compounds and at pH 2, hydrogenation leads to furan (101). [Pg.343]

Ethyl chloride can be dehydrochlorinated to ethylene using alcohoHc potash. Condensation of alcohol with ethyl chloride in this reaction also produces some diethyl ether. Heating to 625°C and subsequent contact with calcium oxide and water at 400—450°C gives ethyl alcohol as the chief product of decomposition. Ethyl chloride yields butane, ethylene, water, and a soHd of unknown composition when heated with metallic magnesium for about six hours in a sealed tube. Ethyl chloride forms regular crystals of a hydrate with water at 0°C (5). Dry ethyl chloride can be used in contact with most common metals in the absence of air up to 200°C. Its oxidation and hydrolysis are slow at ordinary temperatures. Ethyl chloride yields ethyl alcohol, acetaldehyde, and some ethylene in the presence of steam with various catalysts, eg, titanium dioxide and barium chloride. [Pg.2]


See other pages where Water oxidation reactions is mentioned: [Pg.202]    [Pg.345]    [Pg.202]    [Pg.345]    [Pg.239]    [Pg.653]    [Pg.153]    [Pg.241]    [Pg.437]    [Pg.437]    [Pg.66]    [Pg.337]    [Pg.218]    [Pg.117]    [Pg.228]    [Pg.228]    [Pg.373]    [Pg.527]    [Pg.165]    [Pg.198]    [Pg.212]    [Pg.511]    [Pg.535]    [Pg.530]   
See also in sourсe #XX -- [ Pg.335 ]




SEARCH



Cooperative water oxidation reactions

Electrode-assisted Catalytic Water Oxidation and Related Electrochemical Reactions

H2 Purification-Related CO Oxidations Water-Gas Shift (WGS) and PROX Reactions

Metal oxide-water interfaces, reaction

Metal oxide-water interfaces, reaction mechanisms

Metal oxides water reactions with

Nonmetal oxides, water reactions with

Oxidant water

Reaction of Calcium Oxide and Water

Reaction of Metal and Nonmetal Oxides with Water

Reactions carbon oxides with water

Reactions magnesium oxides with water

Reactions nitrogen oxides with water

Reactions of Natural Oxide Films with Water

Reactions phosphorus oxides with water

Reactions sodium oxides with water

Reactions sulfur oxides with water

Water Oxidation and Related Reactions Catalysed by Manganese Compounds

Water covalent oxide reactions with

Water oxidation

Water oxidation, reaction mechanisms

Water reaction with calcium oxide

Water-based reactions oxidation

Water-oxidation reaction electrochemical reactions

© 2024 chempedia.info