Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions sulfur oxides with water

Acid rain Nitric acid and sulfuric acid, resulting largely from the reaction of components of vehicle emissions (nitrogen and sulfur oxides) with water, are carried down by precipitation and enter aquatic systems (lakes and streams), lowering the pH of the water. A less than optimum pH poses serious problems for native fish populations. [Pg.247]

The reaction of thiirane 1-oxides with water or methanol is usually acid-catalyzed and gives /3-substituted sulfenic acids which dimerize to thiolsulfinates (54 Scheme 70) (72JA5786). If acetic acid is used a mixture of disulfide (55) and thiolsulfonate (56) is obtained. Treatment of thiirane 1,1-dioxides with hydroxide ion may involve attack on carbon as well as on sulfur as exemplified by 2-phenylthiirane 1,1-dioxide (Scheme 71). [Pg.157]

Both the acidic character and the covalent character of different oxides of the same element increase with increasing oxidation number of the element. Thus, sulfur(VI) oxide (S03) is more acidic than sulfur(IV) oxide (S02). Reaction of S03 with water gives a strong acid (sulfuric acid, H2SC>4), whereas reaction of S02 with water yields a weak acid (sulfurous acid, H2S03). The oxides of chromium exhibit the same trend. Chromium(VI) oxide (Cr03) is acidic, chromium(III) oxide (Cr203) is amphoteric, and chromium(II) oxide (CrO) is basic. [Pg.590]

Write balanced equations for the following reactions (a) barium oxide with water, (b) iron(II) oxide with perchloric acid, (c) sulfur trioxide with vrater, (d) carbon dioxide with aqueous sodium hydroxide. [Pg.282]

Many very important acids are produced when nonmetal oxides react with water. One of tihe common examples is the reaction of sulfur trioxide with water to produce sulfuric acid ... [Pg.222]

The contact process is an industrial method for the manufacture of sulfuric acid. It consists of the reaction of sulfur dioxide with oxygen to form sulfur trioxide using a catalyst of vanadium(V) oxide, followed by the reaction of sulfur trioxide with water. Because the direct reaction of sulfur trioxide with water produces mists that are unmanageable, the sulfur trioxide is actually dissolved in concentrated sulfuric acid, which is then diluted with water. ... [Pg.942]

The oxides of sulfur react with water in a hydrolysis reaction to form the oxoacids ... [Pg.277]

Reactions and Uses. The common reactions that a-hydroxy acids undergo such as self- or bimolecular esterification to oligomers or cycHc esters, hydrogenation, oxidation, etc, have been discussed in connection with lactic and hydroxyacetic acid. A reaction that is of value for the synthesis of higher aldehydes is decarbonylation under boiling sulfuric acid with loss of water. Since one carbon atom is lost in the process, the series of reactions may be used for stepwise degradation of a carbon chain. [Pg.517]

Mercuric Sulfate. Mercuric s Af2iX.e.[7783-35-9] HgSO, is a colorless compound soluble ia acidic solutions, but decomposed by water to form the yellow water-iasoluble basic sulfate, HgSO 2HgO. Mercuric sulfate is prepared by reaction of a freshly prepared and washed wet filter cake of yellow mercuric oxide with sulfuric acid ia glass or glass-lined vessels. The product is used as a catalyst and with sodium chloride as an extractant of gold and silver from roasted pyrites. [Pg.114]

Nickel Sulfamate. Nickel sulfamate [13770-89-3] Ni(S02NH2)2 4H2O, commonly is used as an electrolyte ia nickel electroforming systems, where low stress deposits are required. As a crystalline entity for commercial purposes, nickel sulfamate never is isolated from its reaction mixture. It is prepared by the reaction of fine nickel powder or black nickel oxide with sulfamic acid ia hot water solution. Care must be exercised ia its preparation, and the reaction should be completed rapidly because sulfamic acid hydrolyzes readily to form sulfuric acid (57). [Pg.11]

Peracid Processes. Peracids, derived from hydrogen peroxide reaction with the corresponding carboxyUc acids in the presence of sulfuric acid and water, react with propylene in the presence of a chlorinated organic solvent to yield propylene oxide and carboxyUc acid (194—196). [Pg.141]

Stannous Sulfate. Stannous sulfate (tin(Il) sulfate), mol wt 214.75, SnSO, is a white crystalline powder which decomposes above 360°C. Because of internal redox reactions and a residue of acid moisture, the commercial product tends to discolor and degrade at ca 60°C. It is soluble in concentrated sulfuric acid and in water (330 g/L at 25°C). The solubihty in sulfuric acid solutions decreases as the concentration of free sulfuric acid increases. Stannous sulfate can be prepared from the reaction of excess sulfuric acid (specific gravity 1.53) and granulated tin for several days at 100°C until the reaction has ceased. Stannous sulfate is extracted with water and the aqueous solution evaporates in vacuo. Methanol is used to remove excess acid. It is also prepared by reaction of stannous oxide and sulfuric acid and by the direct electrolysis of high grade tin metal in sulfuric acid solutions of moderate strength in cells with anion-exchange membranes (36). [Pg.66]

Snia Viscosa. Catalytic air oxidation of toluene gives benzoic acid (qv) in ca 90% yield. The benzoic acid is hydrogenated over a palladium catalyst to cyclohexanecarboxyhc acid [98-89-5]. This is converted directiy to cmde caprolactam by nitrosation with nitrosylsulfuric acid, which is produced by conventional absorption of NO in oleum. Normally, the reaction mass is neutralized with ammonia to form 4 kg ammonium sulfate per kilogram of caprolactam (16). In a no-sulfate version of the process, the reaction mass is diluted with water and is extracted with an alkylphenol solvent. The aqueous phase is decomposed by thermal means for recovery of sulfur dioxide, which is recycled (17). The basic process chemistry is as follows ... [Pg.430]

When a solution of chromic and sulfuric acids in water is added at 0-20° to an alcohol or formate dissolved in acetone, a rapid oxidation takes place with the separation of the green chromium III reduction product as a separate layer. This system is commonly known as Jones reagent. The rate of oxidation is so fast that it is often possible to run the reaction as a titration to an... [Pg.228]

Direct conversion processes use chemical reactions to oxidize H2S and produce elemental sulfur. These processes are generally based either on the reaction of H2S and O2 or H2S and SO2. Both reactions yield water and elemental sulfur. These processes are licensed and involve specialized catalysts and/or solvents. A direct conversion process can be ii.scd directly on the produced gas stream. Where large flow rates are encoLui tered. ii is more common to contact the produced gas stream with a chemical or physical solvent and use a direct conversion proce.ss on the acid cas liberated in the regeneration step. [Pg.173]

Codeposition of silver vapor with perfluoroalkyl iodides at -196 °C provides an alternative route to nonsolvated primary perfluoroalkylsilvers [272] Phosphine complexes of trifluaromethylsilver are formed from the reaction of trimethyl-phosphme, silver acetate, and bis(trifluoromethyl)cadmium glyme [755] The per-fluoroalkylsilver compounds react with halogens [270], carbon dioxide [274], allyl halides [270, 274], mineral acids and water [275], and nitrosyl chloride [276] to give the expected products Oxidation with dioxygen gives ketones [270] or acyl halides [270] Sulfur reacts via insertion of sulfur into the carbon-silver bond [270] (equation 188)... [Pg.716]


See other pages where Reactions sulfur oxides with water is mentioned: [Pg.518]    [Pg.3407]    [Pg.116]    [Pg.484]    [Pg.43]    [Pg.45]    [Pg.308]    [Pg.3406]    [Pg.49]    [Pg.433]    [Pg.507]    [Pg.202]    [Pg.284]    [Pg.446]    [Pg.508]    [Pg.322]    [Pg.313]    [Pg.506]    [Pg.457]    [Pg.311]    [Pg.187]    [Pg.201]    [Pg.535]    [Pg.195]    [Pg.125]    [Pg.37]    [Pg.351]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Oxidant water

Oxidation reactions water

Reaction with sulfur oxide

Reaction with water

Sulfur oxidations with

Sulfur oxidative reactions with

Sulfur oxide

Sulfur oxides oxidation

Sulfur oxidized

Sulfur oxidizer

Sulfur reaction with

Sulfurous oxide

Water oxidation

Water oxidation with

Water with oxidative

© 2024 chempedia.info