Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercuric oxide reaction

A more concentrated solution of HOBr can be prepared by filtration of one of the above solutions and distillation in vacuum. Or the mercuric oxide reaction can be carried out in Freon 11 without water, yielding a solution of bromine monoxide which is filtered and hydrolyzed. Hypobromous acid is slightly ionized its dissociation constant at 25°C is 2 x 10 . ... [Pg.293]

The inorganic products of the ozonolysis reactions were determined for three different organomercurials. Ozonolysis of two dialykylmer-curials produced a mixture of mercuric chloride, mercurous chloride, and mercuric oxide (Reactions 3 and 14, Table I) while one alkylmercuric halide gave only mercuric and mercurous chlorides (Reaction 13, Table I). A known mixture of the three salts was tested for its stability to the reaction conditions. The salts were ozonized as a solution/mixture with methylene chloride. Powder x-ray diffraction showed no difference in the mercury salt mixture after a 2-hour ozonation at 10°C. [Pg.83]

Phenylbenzoyldiazomethane may be prepared by the oxidation of benzil-monohydrazone with mercuric oxide in the presence of dry etber as a solvent Tbe addition of a little alcoholic potassium hydroxide serves to catalyse the reaction ... [Pg.856]

Difluoroethanol is prepared by the mercuric oxide cataly2ed hydrolysis of 2-bromo-l,l-difluoroethane with carboxyHc acid esters and alkaH metal hydroxides ia water (27). Its chemical reactions are similar to those of most alcohols. It can be oxidi2ed to difluoroacetic acid [381-73-7] (28) it forms alkoxides with alkaH and alkaline-earth metals (29) with alkoxides of other alcohols it forms mixed ethers such as 2,2-difluoroethyl methyl ether [461-57-4], bp 47°C, or 2,2-difluoroethyl ethyl ether [82907-09-3], bp 66°C (29). 2,2-Difluoroethyl difluoromethyl ether [32778-16-8], made from the alcohol and chlorodifluoromethane ia aqueous base, has been iavestigated as an inhalation anesthetic (30,31) as have several ethers made by addition of the alcohol to various fluoroalkenes (32,33). Methacrylate esters of the alcohol are useful as a sheathing material for polymers ia optical appHcations (34). The alcohol has also been reported to be useful as a working fluid ia heat pumps (35). The alcohol is available ia research quantities for ca 6/g (1992). [Pg.293]

The aHphatic iodine derivatives are usually prepared by reaction of an alcohol with hydroiodic acid or phosphoms trHodide by reaction of iodine, an alcohol, and red phosphoms addition of iodine monochloride, monobromide, or iodine to an olefin replacement reaction by heating the chlorine or bromine compound with an alkaH iodide ia a suitable solvent and the reaction of triphenyl phosphite with methyl iodide and an alcohol. The aromatic iodine derivatives are prepared by reacting iodine and the aromatic system with oxidising agents such as nitric acid, filming sulfuric acid, or mercuric oxide. [Pg.366]

Mercuric Cyanides. Mercuric cyanide7, Hg(CN)2, is a white tetragonal crystalline compound, Httle used except to a small degree as an antiseptic. It is prepared by reaction of an aqueous slurry of yellow mercuric oxide (the red is less reactive) with excess hydrogen cyanide. The mixture is heated to 95°C, filtered, crystallized, isolated, and dried. Its solubihty in water is 10% at 25°C. [Pg.112]

Yellow mercuric oxide may be obtained by precipitation from solutions of practically any water-soluble mercuric salt through the addition of alkah. The most economical are mercuric chloride or nitrate. Although yellow HgO has some medicinal value in ointments and other such preparations, the primary use is as a raw material for other mercury compounds, eg, Millon s ha.se[12529-66-7], Hg2NOH, which is formed by the reaction of aqueous ammonia and yellow mercuric oxide. [Pg.113]

Red mercuric oxide generally is prepared in one of two ways by the heat-induced decomposition of mercuric nitrate or by hot precipitation. Both methods require careful control of reaction conditions. In the calcination method, mercury and an equivalent of hot, concentrated nitric acid react to form... [Pg.113]

Red mercuric oxide, identical chemically to the yellow form, is somewhat less reactive and more expensive to produce. An important use is ia the Ruben-MaHory dry cell, where it is mixed with graphite to act as a depolarizer (see Batteries). The overall cell reaction is as follows ... [Pg.114]

Mercuric Sulfate. Mercuric s Af2iX.e.[7783-35-9] HgSO, is a colorless compound soluble ia acidic solutions, but decomposed by water to form the yellow water-iasoluble basic sulfate, HgSO 2HgO. Mercuric sulfate is prepared by reaction of a freshly prepared and washed wet filter cake of yellow mercuric oxide with sulfuric acid ia glass or glass-lined vessels. The product is used as a catalyst and with sodium chloride as an extractant of gold and silver from roasted pyrites. [Pg.114]

Antisyphilitics. Mercuric sahcyiate/T77(9-72-/] (6) and mercuric succinimide [584 3-0] (7) are simple salts prepared by the reaction ia water of mercuric oxide and sahcyhc acid or succinimide, respectively. Use as antisyphilitics has been substantially eliminated by virtue of the discovery of more potent and effective nonmetaUic biocides. [Pg.115]

Unsaturation value can be determined by the reaction of the akyl or propenyl end group with mercuric acetate ia a methanolic solution to give acetoxymercuric methoxy compounds and acetic acid (ASTM D4671-87). The amount of acetic acid released ia this equimolar reaction is determined by titration with standard alcohoHc potassium hydroxide. Sodium bromide is normally added to convert the iasoluble mercuric oxide (a titration iaterference) to mercuric bromide. The value is usually expressed as meg KOH/g polyol which can be converted to OH No. units usiag multiplication by 56.1 or to percentage of vinyl usiag multiplication by 2.7. [Pg.352]

Chlorination of bismuth or mercuric oxides results in precipitation of relatively insoluble basic chlorides, ie, BiOCl and HgO HgCl2. However, the reaction with is slow and does not produce high concentrations of HOCl (121). With HgO, the HOCl solutions may contain significant amounts of... [Pg.468]

Phenylacetylene gives 1-phenyI-l, l-difluoroethane on reaction with a large excess of hydrogen fluoride in ether at 0 C or, in better yield, in the gas phase over a mercuric oxide catalyst [/]. Allene affords 2,2-difluoropropane [/]... [Pg.58]

In a modified procedure the free carboxylic acid is treated with a mixture of mercuric oxide and bromine in carbon tetrachloride the otherwise necessary purification of the silver salt is thereby avoided. This procedure has been used in the first synthesis of [1.1.1 ]propellane 10. Bicyclo[l.l.l]pentane-l,3-dicarboxylic acid 8 has been converted to the dibromide 9 by the modified Hunsdiecker reaction. Treatment of 9 with t-butyllithium then resulted in a debromination and formation of the central carbon-carbon bond thus generating the propellane 10." ... [Pg.168]

Dehydrogenation of the hydrazide derivative 33 with mercuric oxide in the presence of ethylene diamine tetraacetic acid (EDTA) gave 34 and 35 (77AP588). The latter (35) was prepared from a reaction of ester 36 with the appropriate lactam 37 (Scheme 11). [Pg.46]

The rate-determining step was, therefore considered to be reaction of bromine with peroxyacetic acid to give a species (suggested as bromine acetate)which subsequently and rapidly, brominates. Formation of bromine acetate was believed to take place according to the reaction scheme represented by equilibrium (158) (which is analogous to the mercuric oxide oxidation of bromine) followed by either equilibrium (159), (160) or (161), viz. [Pg.135]

Vanadium pentoxide and mercuric oxide were used as catalysts for the hydrogen peroxide oxidation of bis(phenylthio)methane to its monooxide 17a31 (equation 5). From the synthetic point of view, it is interesting to note that vanadium pentoxide, in addition to its catalytic action, functions also as an indicator in this reaction. In the presence of hydrogen peroxide, the reaction mixture is orange while in the absence of hydrogen peroxide a pale yellow colour is observed. Thus, it is possible to perform the oxidation process as a titration ensuring that an excess of oxidant is never present. [Pg.239]

When iodine is the reagent, the ratio between the reactants is very important and determines the products. A 1 1 ratio of salt to iodine gives the alkyl halide, as above. A 2 1 ratio, however, gives the ester RCOOR. This is called the Simonini reaction and is sometimes used to prepare carboxylic esters. The Simonini reaction can also be carried out with lead salts of acids." A more convenient way to perform the Hunsdiecker reaction is by use of a mixture of the acid and mercuric oxide instead of the salt, since the silver salt must be very pure and dry and such pure silver salts are often not easy to prepare. [Pg.943]

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts. Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov s rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With allqmes of the form RC=CH methyl ketones are formed almost exclusively, but with RC=CR both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid). ... [Pg.995]

A related method for conversion of carboxylic acids to bromides with decarboxylation is the Hunsdiecker reaction.276 The usual method for carrying out this transformation involves heating the carboxylic acid with mercuric oxide and bromine. [Pg.1147]

Other decarboxylations reported by Takahashi have proved irrep-roducible. The reaction between 2,2 -biphenyldicarboxylic acid anhydride in alkali and mercuric oxide in acetic acid was claimed to give 2 -mercurio-2-biphenylcarboxylate by hemidecarboxylation [Eq. (84)] (97) but yielded instead mercuric 2,2 -biphenyldicarboxylate and negligible decarboxylation [Eq. (85)] (98). Similarly, the reaction between sodium 2,3-pyridinedicarboxylate and mercuric oxide in acetic acid, reported to give... [Pg.260]

Advantage has been taken of the aforementioned observations in the synthesis of a terthiophene natural product, arctic acid (147) [123]. Pd-catalyzed carbonylation of bromobisthiophene 25, obtained from the Kumada coupling of 2-thienylmagnesium bromide and 2,5-dibromothiophene, gave bithiophene ester 144, which was converted to iodide 145 by reaction with iodine and yellow mercuric oxide. Subsequent propynylation of 145 was then realized using the Sonogashira reaction with prop-l-yne to give bisthienyl alkyne 146, which was subsequently hydrolyzed to 5 -(l-propynyl)-2,2 -bithienyl-5-carboxylic acid (147), a natural product isolated from the root of Arctium lappa. [Pg.255]

Mercuric oxide, use in oxidation of hydrazones, 50, 28 with 3-chlorocyclobutanecar-boxylic acid and bromine to give l-bromo-3-chlorocyclo-butane, 51, 106 MERCURIC OXIDE-MODIFIED HUNS-DIECKER REACTION 1-BRQMO-... [Pg.61]

Under the catalysis of mercuric oxide and boron trifluoride-diethyl ether, the reaction of methanol with 1,2-hexadiene afforded 2,2-dimethoxyhexane [6]. Hydration with sulfuric acid led to methyl n-butyl ketone [6],... [Pg.596]


See other pages where Mercuric oxide reaction is mentioned: [Pg.26]    [Pg.26]    [Pg.1297]    [Pg.26]    [Pg.26]    [Pg.26]    [Pg.1297]    [Pg.26]    [Pg.856]    [Pg.35]    [Pg.480]    [Pg.27]    [Pg.528]    [Pg.466]    [Pg.246]    [Pg.397]    [Pg.149]    [Pg.161]    [Pg.10]    [Pg.1013]    [Pg.43]   
See also in sourсe #XX -- [ Pg.731 ]




SEARCH



1-oxide mercuration

MERCURIC OXIDE-MODIFIED HUNSDIECKER REACTION: 1-BROMO-3-CHLOROCYCLOBUTANE

Mercuric oxide oxidation

Mercuric oxide, modified Hunsdiecker reaction

Mercuric oxide, reaction with bromine

Mercurous oxide

Mercurous reaction

© 2024 chempedia.info