Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation of nickel

Nickel Carbonate. Nickel carbonate [3333-67-3], NiCO, is a light-green, rhombic crystalline salt, density 2.6 g/cm, that is very slightly soluble in water. The addition of sodium carbonate to a solution of a nickel salt precipitates an impure basic nickel carbonate. The commercial material is the basic salt 2NiCo2 3Ni(OH)2 4H20 [29863-10-3]. Nickel carbonate is prepared best by the oxidation of nickel powder in ammonia and CO2. Boiling away the ammonia causes precipitation of pure nickel carbonate (32). [Pg.10]

Catalysts used for preparing amines from alcohols iaclude cobalt promoted with tirconium, lanthanum, cerium, or uranium (52) the metals and oxides of nickel, cobalt, and/or copper (53,54,56,60,61) metal oxides of antimony, tin, and manganese on alumina support (55) copper, nickel, and a metal belonging to the platinum group 8—10 (57) copper formate (58) nickel promoted with chromium and/or iron on alumina support (53,59) and cobalt, copper, and either iron, 2iac, or zirconium (62). [Pg.221]

One mathematical model of the oxidation of nickel spheres was confirmed when it took into account the decrease in the reaction surface as the reaction proceeded. [Pg.2124]

The oxidation of nickel-copper alloys provides an example of die dependence of the composition of the oxide layer on the composition of the alloy. Nickel-copper alloys depart from Raoult s law, but as a first approximation can be taken as ideal. The Gibbs energy change for the reaction... [Pg.259]

The fact that oxides can exist as metastable phases is illustrated by the Ni-HjO diagram (Fig. 1.18) in which the curves for the various oxides of nickel have been extrapolated into the acid region of Ni stability, and this diagram emphasises the fact that nickel can be passivated outside the region of thermodynamic stability of the oxides". [Pg.73]

Formation of the first layer (a monolayer) of passivating oxide film on a denuded metal surface occurs very simply by the loss of protons from the adsorbed intermediate oxidation products, such intermediates being common to both dissolution and passivation processes . Thus for example, the first oxidative step in the anodic oxidation of nickel is the formation of the unstable adsorbed intermediate NiOH by... [Pg.127]

Although the oxidation of nickel has been extensively studied it is only recently that the process has been clearly understood. The relative simplicity of the system in which only a single-phase layer of oxide, NiO, forms has encouraged research, and a further simplification is that the expansion coefficients of the oxide and metal are similar, (17.1 and 17.6 xlO" °C respectively,) so that the effects of thermal cycles can be largely neglected. [Pg.1039]

Fig. 7.36 Effect of alloying on the rate constant for oxidation of nickel at 900°C ... Fig. 7.36 Effect of alloying on the rate constant for oxidation of nickel at 900°C ...
A semi-quantitative indication of the effects of different elements on the resistance to oxidation of nickel is given in Table 7.15 which lists values for the relative oxidation rate with respect to that of nickel for different concentrations of solute element. These values are approximately valid over quite wide ranges of time and temperature. ... [Pg.1043]

There are no significant high-temperature applications for alloys of nickel with iron. The scales formed in air consist of nickel oxide and iron oxide and the latter is usually present in the form of the spinel, NiO-FejOj . In the case of the more dilute nickel alloys, internal oxidation of nickel was Observed S. Substitution of a substantial proportion of nickel by iron results in a deterioration in the oxidation resistance of nickel-chromium... [Pg.1052]

Table 7.21 Oxidation of nickel-base alloys and nickel-chromium steels in cyclic temperature tests of 100 h duration" ... Table 7.21 Oxidation of nickel-base alloys and nickel-chromium steels in cyclic temperature tests of 100 h duration" ...
The literature on the oxidation of nickel-copper alloys is not extensive and emphasis tends to be placed on the copper-rich materials. The nickel-rich alloys oxidise according to a parabolic law and at a rate similar to that for nickel Corronil (Ni-30Cu) exhibited a parabolic rate behaviour below 850°C but a more complex behaviour involving two parabolic stages above 900°C. Electron diffraction examination of the oxide films formed on a range of nickel-copper alloys showed the structures of the films to be the same as for the bulk oxides of the component metals and on all the alloys examined only copper oxide was formed below 500°C and only nickel oxide above 700°C . [Pg.1054]

Oxidation of nickel. Nickel reacts slowly with hydrochloric acid to form tygl and Ni2+ ions in solution. Evaporation of the solution formed gives green crystals of NiCI2 - 6H2O. [Pg.547]

You might wonder what we would have learned if we had assumed that either of these two cells operates with the reverse reaction. Suppose we had proposed a cell based on oxidation of nickel and reduction of zinc ... [Pg.212]

De Souza et al. (1997) used spectroscopic ellipsometry to study the oxidation of nickel in 1 M NaOH. Bare nickel electrodes were prepared by a series of mechanical polishing followed by etching in dilute HCl. The electrode was then transferred to the spectroelectrochemical cell and was cathodicaUy polarized at 1.0 V vs. Hg/HgO for 5 minutes. The electrode potential was then swept to 0.9 V. Ellipsometry data were recorded at several potentials during the first anodic and cathodic sweep. Figure 27.30 shows a voltammogram for Ni in l.OM NaOH. The potentials at which data were recorded are shown. Optical data were obtained for various standard materials, such as NiO, a -Ni(OH)2, p-Ni(OH)2, p-NiOOH, and y-NiOOH. [Pg.496]

More recently, reductive elimination of aryl ethers has been reported from complexes that lack the activating substituent on the palladium-bound aryl group (Equation (55)). These complexes contain sterically hindered phosphine ligands, and these results demonstrate how steric effects of the dative ligand can overcome the electronic constraints of the reaction.112,113 Reductive elimination of oxygen heterocycles upon oxidation of nickel oxametallacycles has also been reported, but yields of the organic product were lower than they were for oxidatively induced reductive eliminations of alkylamines from nickel(II) mentioned above 215-217... [Pg.393]

Nickel hexacyanoferrate (NiHCF) films can be prepared by electrochemical oxidation of nickel electrodes in the presence of hexacyanoferrate(III) ions,141 or by voltammetric cycling of inert substrate electrodes in solutions containing nickel(II) and hexacyanoferrate(III) ions.142 NiHCF films do not possess low-energy intervalent CT bands, however, when deposited on ITO they are observed to reversibly switch from yellow to colorless on electroreduction.143... [Pg.595]

Decomposition of either nickel hydroxide or nickel carbonate yields NiO, the only oxide of nickel of any importance. However, two oxides of copper are known, Cu20 and CuO. Of these, Cu20 is the more stable, and it is the product when CuO is heated to very high temperature. [Pg.384]

An unconventional preparation of nickel diphenyldiselenophosphinate, Ni(Se2 PPh2)2, involves oxidation by elemental selenium of Ni(PPh2)2, obtained in turn by electrochemical oxidation of nickel metal in acetonitrile solutions of PhzPH.449... [Pg.621]

Replacement reactions of aromatic halides or other halides with SCN, NCO, or N02 can be easily carried out by oxidation of nickel complexes with copper salts (examples 8-11, Table XI). [Pg.243]

Shen et al. (142) used an isotopic transient technique and XPS to investigate the partial oxidation of CH4 to synthesis gas on a Ni/Al203 catalyst at 973 K. The results show that CH4 can decompose easily and quickly to give H2 and Ni C on the reduced catalyst, and that Ni vC can react rapidly with NiO, formed by the oxidation of nickel by 02 to give CO or C02, depending on the relative concentration of Ni,C around NiO on the catalyst surface. The conclusion drawn by the authors (142) was not only that H2 and CO are primary products in the partial oxidation of CH4, but also that most of the CO2 is also the primary product of the surface reaction between Ni,C and NiO. In contrast, the kinetics results of Verykios et al. (143) indicated that the reaction on the Ni/La203 catalyst mainly takes place via the sequence of total oxidation to CO2 and H20, followed by... [Pg.339]

With nickel the same variation 0/ the temperature of reduction is noted, depending on the physical condition. Thus Moisson states that the sub-oxide of nickel (NiO) which has not been calcined, is reduced by hydrogen at 230°-240° C. Muller, on the other hand, states that the reduction of the oxide at this temperature is not complete but only partial, but that if the temperature is raised to 270° C. a complete reduction takes place. If the oxide of nickel has been strongly heated its temperature of reduction to the metallic state is at least 420° C., in which case it is quite unsuitable for use as the catalytic agent in the hydrogenation of organic oils. [Pg.19]

The use of six equivalents of dihydrogen peroxide leads to a clean conversion of the dithiolate complex to the disulfonate compound. Earlier studies on oxidation of nickel thiolates showed that oxidations with dioxygen stop at monosulfinates. Our observation and the characterization of the first chelating bis-sulfonato nickel complex formed from the direct oxidation of a mononuclear nickel dithiolate, may also provide new insight into the chemistry of sulfur-rich nickel-containing enzymes in the presence of oxygen. [Pg.198]

The most systematic study of reactions of transition metal atoms with halogen compounds has been the work of Klabunde on oxidation of nickel and palladium atoms. Some work has been done with copper, silver, gold, and platinum, but only scattered results have been reported for other metals. Klabunde s research has shown that perfluoroorgano-halides form isolable organometallic compounds on reaction with metal atoms much more commonly than nonfluorinated halides. The types of reactions observed with different classes of organic halides are considered next. [Pg.80]

The importance of extralattice oxygen receives considerable support in the work of Krauss (36), who measured the yield of nitrous oxide as a function of time during catalytic flow oxidation of ammonia at 300°C. on the oxides of nickel, cobalt, iron, and manganese. By titrating at the... [Pg.64]

Apart from the activation of the anode no reagent has to be produced. Nickel peroxide, however, has to be prepared by oxidation of nickel(II)sulfate with sodium hypochlorite. Subsequently the reagent has to be carefully dried and the amount of active oxygen determined by iodometric titration. This must be kept in mind, because small amounts of alcohol need already a relative large amount of nickel peroxide, e.g. 100 mmol alcohol more than 75 g nickel peroxide. For that reason the use of the relative expensive, commercial nickel peroxide is restricted. [Pg.125]

The detection step involves electrochemical oxidation at a nickel electrode. This electrode has been applied to measurements of glucose (4), ethanol (5), amines, and amino acids (6,7). The reaction mechanism involves a catalytic higher oxide of nickel. The electrolyte solution consists of 0.1 M sodium hydroxide containing 10-4 M nickel as suspended nickel hydroxide to ensure stability of the electrode process. The flow-injection technique offers the advantages of convenience and speed in solution handling and ready maintenance of the active electrode surface. [Pg.345]


See other pages where Oxidation of nickel is mentioned: [Pg.256]    [Pg.128]    [Pg.952]    [Pg.142]    [Pg.225]    [Pg.258]    [Pg.359]    [Pg.446]    [Pg.328]    [Pg.256]    [Pg.63]    [Pg.192]    [Pg.27]    [Pg.180]    [Pg.189]    [Pg.573]    [Pg.534]    [Pg.588]    [Pg.591]    [Pg.591]    [Pg.592]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Adsorption of Oxygen and Oxidation Catalysis on Nickel Oxide

Nickel oxidation of methane

Nickel oxide

Nickel oxide oxidation

Nickelic oxide

Nickelous oxide

Oxidation of Nickel(II)

Oxidation of nickel aluminide based composites

Oxides of nickel

Oxides of nickel

Preparation of Nickel(III) Oxide

© 2024 chempedia.info