Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Light, green

White phosphorus is very reactive. It has an appreciable vapour pressure at room temperature and inflames in dry air at about 320 K or at even lower temperatures if finely divided. In air at room temperature it emits a faint green light called phosphorescence the reaction occurring is a complex oxidation process, but this happens only at certain partial pressures of oxygen. It is necessary, therefore, to store white phosphorus under water, unlike the less reactive red and black allotropes which do not react with air at room temperature. Both red and black phosphorus burn to form oxides when heated in air, the red form igniting at temperatures exceeding 600 K,... [Pg.211]

Interesting note, using CuCk for the first time.. NO OLIVE GREEN color appeared. Stayed slightly yellow -dark brown... All the way through the rxn. Never came close to Green (light, dark or olive). When rxn finished solution was very dark reddish-brown, even when acid washed it stayed dark reddish brown. [Pg.72]

White Phosphorus Oxidation. Emission of green light from the oxidation of elemental white phosphoms in moist air is one of the oldest recorded examples of chemiluminescence. Although the chemiluminescence is normally observed from sotid phosphoms, the reaction actually occurs primarily just above the surface with gas-phase phosphoms vapor. The reaction mechanism is not known, but careful spectral analyses of the reaction with water and deuterium oxide vapors indicate that the primary emitting species in the visible spectmm are excited states of (PO)2 and HPO or DPO. Ultraviolet emission from excited PO is also detected (196). [Pg.271]

C color coding marker black black light green light green blue brown red ... [Pg.266]

The first report concerning barium compounds occurred in the early part of the seventeenth century when it was noted that the ignition of heavy spar gave a peculiar green light. A century later, Scheele reported that a precipitate formed when sulfuric acid was added to a solution of barium salts. The presence of natural barium carbonate, witherite [14941-39-0] BaCO, was noted in Scodand by Withering. [Pg.475]

Fig. 14. Masking coupler used in the cyan layer showing (—) the unwanted density to blue-green light that accompanies cyan dye formation matched by (- --) a complementary density to blue-green from the unreacted coupler, and (— — ) density to red light. Fig. 14. Masking coupler used in the cyan layer showing (—) the unwanted density to blue-green light that accompanies cyan dye formation matched by (- --) a complementary density to blue-green from the unreacted coupler, and (— — ) density to red light.
The Rayleigh scattering extinction coefficient for particle-free air is 0.012 km for "green" light (y = 0.05 /rm) at sea level (4). This permits a visual range of —320 km. The particle-free, or Rayleigh scattering, case represents the best visibility possible with the current atmosphere on earth. [Pg.140]

Seismic zone basis must be specified for structural design. Soil data is important, especially for cases where extensive use of foundation piling is required with major cost impact. Availability of aggregate or natural pond stabilization materials near the site will not be considered for early cost estimates, but can be kept in mind for future planning if the project is given the green light. [Pg.216]

The commonest form of phosphorus, and the one which is usually formed by condensation from the gaseous or liquid states, is the waxy, cubic, white form o -P4 (d 1.8232 gcm at 20°C). This, paradoxically, is also the most volatile and reactive solid form and thermodynamically the least stable. It is the slow phosphorescent oxidation of the vapour above these crystals that gives white phosphorus its most characteristic property. Indeed, the emission of yellow-green light from the oxidation of P4 is one of the earliest recorded examples of chemiluminescence, though the details of the reaction... [Pg.479]

Which is higher in energy, FM radio waves with a frequency of 1.015 x 108 Hz (101.5 MHz) or visible green light with a frequency of 5 x 1014 Hz ... [Pg.421]

In the first step, luciferin is converted into luciferyl adenylate by ATP in the presence of Mg2+. In the second step, luciferyl adenylate is oxidized by molecular oxygen resulting in the emission of yellow-green light, of which the mechanism is discussed in Sections 1.1.6 and 1.1.7. Both steps, (1) and (2), are catalyzed by luciferase. The reaction of the first step is slower than that of the second step, thus the first step is the rate-limiting step. [Pg.5]

Fig. 1.12 Mechanism of the bioluminescence reaction of firefly luciferin catalyzed by firefly luciferase. Luciferin is probably in the dianion form when bound to luciferase. Luciferase-bound luciferin is converted into an adenylate in the presence of ATP and Mg2+, splitting off pyrophosphate (PP). The adenylate is oxygenated in the presence of oxygen (air) forming a peroxide intermediate A, which forms a dioxetanone intermediate B by splitting off AMP. The decomposition of intermediate B produces the excited state of oxyluciferin monoanion (Cl) or dianion (C2). When the energy levels of the excited states fall to the ground states, Cl and C2 emit red light (Amax 615 nm) and yellow-green light (Amax 560 nm), respectively. Fig. 1.12 Mechanism of the bioluminescence reaction of firefly luciferin catalyzed by firefly luciferase. Luciferin is probably in the dianion form when bound to luciferase. Luciferase-bound luciferin is converted into an adenylate in the presence of ATP and Mg2+, splitting off pyrophosphate (PP). The adenylate is oxygenated in the presence of oxygen (air) forming a peroxide intermediate A, which forms a dioxetanone intermediate B by splitting off AMP. The decomposition of intermediate B produces the excited state of oxyluciferin monoanion (Cl) or dianion (C2). When the energy levels of the excited states fall to the ground states, Cl and C2 emit red light (Amax 615 nm) and yellow-green light (Amax 560 nm), respectively.
Because luciferyl adenylate emitted a red chemiluminescence in the presence of base, coinciding with the red fluorescence of 5,5-dimethyloxylucferin, the keto-form monoanion Cl in its excited state is considered to be the emitter of the red light. Thus, the emitter of the yellow-green light is probably the enol-form dianion C2 in its excited state, provided that the enolization takes place within the life-time of the excited state. Although the evidence had not been conclusive, especially on the chemical structures of the light emitters that emit two different colors, the mechanism shown in Fig. 1.12 was widely believed and cited until about 1990. [Pg.17]

According to Branchini et al. (2004), luciferase modulates the emission color by controlling the resonance-based charge delocalization of the anionic keto-form of oxyluciferin in the excited state. They proposed the structure C5 as the yellow-green light emitter, and the structure C6 as the red light emitter. [Pg.19]

Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm). Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm).

See other pages where Light, green is mentioned: [Pg.123]    [Pg.134]    [Pg.242]    [Pg.302]    [Pg.68]    [Pg.121]    [Pg.301]    [Pg.404]    [Pg.409]    [Pg.467]    [Pg.467]    [Pg.469]    [Pg.472]    [Pg.478]    [Pg.480]    [Pg.496]    [Pg.508]    [Pg.428]    [Pg.335]    [Pg.54]    [Pg.382]    [Pg.524]    [Pg.809]    [Pg.1150]    [Pg.420]    [Pg.334]    [Pg.532]    [Pg.10]    [Pg.15]    [Pg.16]    [Pg.17]    [Pg.18]    [Pg.92]    [Pg.129]    [Pg.132]    [Pg.133]   
See also in sourсe #XX -- [ Pg.64 , Pg.65 , Pg.71 , Pg.72 ]

See also in sourсe #XX -- [ Pg.64 , Pg.65 , Pg.71 , Pg.72 ]




SEARCH



Light green SF

Light-emitting diode green

Light-harvesting complex green bacteria

Organic light-emitting diode green

Spots light green

© 2024 chempedia.info