Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic constraints

In the case of the retro Diels-Alder reaction, the nature of the activated complex plays a key role. In the activation process of this transformation, the reaction centre undergoes changes, mainly in the electron distributions, that cause a lowering of the chemical potential of the surrounding water molecules. Most likely, the latter is a consequence of an increased interaction between the reaction centre and the water molecules. Since the enforced hydrophobic effect is entropic in origin, this implies that the orientational constraints of the water molecules in the hydrophobic hydration shell are relieved in the activation process. Hence, it almost seems as if in the activated complex, the hydrocarbon part of the reaction centre is involved in hydrogen bonding interactions. Note that the... [Pg.168]

PP2- However, there is an alternative theoretical mechanism by which the two Ps could be emitted without any neutriao, denoted PPq- The experimental methods that are used to look for the double P decay mode are often more sensitive to one of these decay modes than the other. The difference ia the expected energy distribution of the electrons is clear from the fact that ia the first case the total decay energy is divided between four particles, including the two antineutfinos that caimot be observed ia the second, it is only divided between the two electrons. As more exotic modes of decay are measured and even larger limits are placed on some of the half-fives, the constraints on theory become even stronger. [Pg.453]

Microanalysis often places special constraints on the preparation of thin specimens beyond the general requirement to be transparent to 100-keV electrons. [Pg.171]

The application of external magnetic fields to the sample during analysis presents considerable problems and constraints for electron techniques, whereas external fields have no influence on MOKE. [Pg.733]

Operationally, the electron techniques all require high-vacuum or, more likely, ultrahigh-vacuum environments, and the magnetic material of interest must be within a few atomic layers of the surface. MOKE analysis is not restricted by these constraints, although interesting samples may be. [Pg.733]

Finally, the speed of response of the detector sensor and the associated electronics once played an important part in optimum column design. The speed of response, or the overall time constant of the detector and associated electronics, would be particularly important in the analysis of simple mixtures where the analysis time can be extremely short and the elution of each peak extremely rapid. Fortunately, modern LC detector sensors have a very fast response and the associated electronic circuits very small time constants and, thus, the overall time constant of the detector system does not significantly influence column design in contemporary instruments. The instrument constraints are summarized in Table 2... [Pg.364]

The fact that detailed balance provides only half the number of constraints to fix the unknown coefficients in the transition probabilities is not really surprising considering that, if it would fix them all, then the static (lattice gas) Hamiltonian would dictate the kind of kinetics possible in the system. Again, this cannot be so because this Hamiltonian does not include the energy exchange dynamics between adsorbate and substrate. As a result, any functional relation between the A and D coefficients in (44) must be postulated ad hoc (or calculated from a microscopic Hamiltonian that accounts for couphng of the adsorbate to the lattice or electronic degrees of freedom of the substrate). Several scenarios have been discussed in the literature [57]. [Pg.465]

A basis set is a mathematical representation of the molecular orbitals within a molecule. The basis set can be interpreted as restricting each electron to a particular region of space. Larger basis sets impose fewer constraints on electrons and more accurately approximate exact molecular orbitals. They require correspondingly more computational resources. Available basis sets and their characteristics are discussed in Chapter 5. [Pg.9]

At a physical level. Equation 35 represents a mixing of all of the possible electronic states of the molecule, all of which have some probability of being attained according to the laws of quantum mechanics. Full Cl is the most complete non-relativistic treatment of the molecular system possible, within the limitations imposed by the chosen basis set. It represents the possible quantum states of the system while modelling the electron density in accordance with the definition (and constraints) of the basis set in use. For this reason, it appears in the rightmost column of the following methods chart ... [Pg.266]

In deoxyhemoglobin, histidine F8 is liganded to the heme iron ion, but steric constraints force the Fe His-N bond to be tilted about 8° from the perpendicular to the plane of the heme. Steric repulsion between histidine F8 and the nitrogen atoms of the porphyrin ring system, combined with electrostatic repulsions between the electrons of Fe and the porphyrin 77-electrons, forces the iron atom to lie out of the porphyrin plane by about 0.06 nm. Changes in... [Pg.485]

Another aspect of wave function instability concerns symmetry breaking, i.e. the wave function has a lower symmetry than the nuclear framework. It occurs for example for the allyl radical with an ROHF type wave function. The nuclear geometry has C21, symmetry, but the Cay symmetric wave function corresponds to a (first-order) saddle point. The lowest energy ROHF solution has only Cj symmetry, and corresponds to a localized double bond and a localized electron (radical). Relaxing the double occupancy constraint, and allowing the wave function to become UHF, re-establish the correct Cay symmetry. Such symmetry breaking phenomena usually indicate that the type of wave function used is not flexible enough for even a qualitatively correct description. [Pg.76]

Consider now the behaviour of the HF wave function 0 (eq. (4.18)) as the distance between the two nuclei is increased toward infinity. Since the HF wave function is an equal mixture of ionic and covalent terms, the dissociation limit is 50% H+H " and 50% H H. In the gas phase all bonds dissociate homolytically, and the ionic contribution should be 0%. The HF dissociation energy is therefore much too high. This is a general problem of RHF type wave functions, the constraint of doubly occupied MOs is inconsistent with breaking bonds to produce radicals. In order for an RHF wave function to dissociate correctly, an even-electron molecule must break into two even-electron fragments, each being in the lowest electronic state. Furthermore, the orbital symmetries must match. There are only a few covalently bonded systems which obey these requirements (the simplest example is HHe+). The wrong dissociation limit for RHF wave functions has several consequences. [Pg.111]

An explanation for the stereoselectivity of the reaction involves optimal overlap of the 7t-orbital of the carbonyl with the developing electron rich p-orbital on C2 during the Sj,j2 displacement of the chloride by the alkoxide (24). Thus, orbital overlap imposes conformational constraints in the transition state that leads to nonbonding interactions disfavoring transition state 15P... [Pg.17]

Human occupants, electrical/electronic equipment and process plant all emit varying quantities of sensible and latent heat. Equally, these various elements require (or can tolerate) differing environmental conditions. Depending on these operational constraints, the need may well exist to provide natural (or powered) ventilation to maintain environmental conditions (temperature and/or humidity) consistent with the occupational/process requirements. [Pg.56]


See other pages where Electronic constraints is mentioned: [Pg.416]    [Pg.336]    [Pg.244]    [Pg.73]    [Pg.416]    [Pg.416]    [Pg.336]    [Pg.244]    [Pg.73]    [Pg.416]    [Pg.1424]    [Pg.1633]    [Pg.1957]    [Pg.156]    [Pg.349]    [Pg.363]    [Pg.377]    [Pg.425]    [Pg.147]    [Pg.213]    [Pg.312]    [Pg.199]    [Pg.333]    [Pg.429]    [Pg.433]    [Pg.366]    [Pg.375]    [Pg.25]    [Pg.245]    [Pg.285]    [Pg.247]    [Pg.273]    [Pg.3]    [Pg.266]    [Pg.65]    [Pg.132]    [Pg.71]    [Pg.202]    [Pg.220]    [Pg.225]    [Pg.314]   
See also in sourсe #XX -- [ Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 ]




SEARCH



© 2024 chempedia.info