Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Catalytic Reductions

Cyanoborohydride has been used under catalytic nonpolar conditions [14] as well as stoichiometrically in cation solvating media [13]. Sodium cyanoborohydride can be solubilized in dichloromethane by complexation with 18-crown-6. In dichloromethane Omethylsulfoxonium salts are reduced to the corresponding sulfides in good yield (see Sect. 13.8 and Eqs. 12.5 and 13.24). The methyl fluorosulfonate salts of dibutyl-, diphenyl-, and dibenzyl sulfoxides are reduced to the corresponding sulfides in 85%, 77% and 91%yields, respectively [14]. [Pg.219]

Formamidinesulfmic acid (obtained by the oxidation of thiourea with hydrogen peroxide) has been used to reduce disulfides to sulfides (see Eqs. 12.6 and 13.22) and N-tosylsulfilimines to sulfides (see Eqs. 12.7 and 13.23), under phase transfer catalytic conditions in the presence of hexadecyltributylphosphonium bromide [15]. Diphenyl, dibenzyl and dibutyldisulfides were reduced by this method to the corresponding sulfides in 72%, 62% and 90% yields respectively. Examples of the reduction of N-tosylsulfilimines are recorded in Table 12.4. [Pg.219]


Reduction of NO to N20 or N2 is important in biological denitrification where anaerobic organisms are involved and model studies using copper catalysts have been studied.42 Much study on other catalytic reductions of NO (and of N02) has been made in connection with atmospheric pollution.43... [Pg.327]

A number of nucleophilic reactions of the olefins (CFs)2C CX CFs (X = CF3.H, or F) have been described. Addition of methanol yields (CF3)aCH CX(CFs) OMe, in a reaction which requires triethylamine as basic catalyst, except where the substituent is fluorine, substitution of fluorine by a dimethylamino-group occurring upon reaction of (CF3)2C CF-CF3 with dimethylamine and water, and metfaylamine adds to (CF3)2C CF CF3. Chlorine readily adds photochemically to the olefins, and all except the most hindered (CF3)sC C(CF3)3 undergo ready hydrogenation in the presence of palladium on alumina (see pp. 63,83 for other catalytic reductions). [Pg.72]

Enantioselective reaction A reaction that produces one enantiomer in preference to the other. Catalytic reduction of the following alkene in the presence of an (i )-BINAP-Ru catalyst gives (S)-naproxen in greater than 98% enantiomeric excess (>99% < 1%). [Pg.1256]

H02C(CH2)2C02H. Colourless prisms m.p. 182 C, b.p. 235°C. Occurs in amber, algae, lichens, sugar cane, beets and other plants, and is formed during the fermentation of sugar, tartrates, malates and other substances by a variety of yeasts, moulds and bacteria. Manufactured by the catalytic reduction of maleic acid or by heating 1,2-dicyanoethane with acids or alkalis. Forms an anhydride when heated at 235°C. Forms both acid and neutral salts and esters. Used in the manufacture of succinic anhydride and of polyesters with polyols. [Pg.375]

Trifluoroethanol was first prepared by the catalytic reduction of trifluoroacetic anhydride [407-25-0] (58). Other methods iaclude the catalytic hydrogeaatioa of trifluoroacetamide [354-38-1] (59), the lithium aluminum hydride reductioa of trifluoroacetyl chloride [354-32-5] (60) or of trifluoroacetic acid or its esters (61,62), and the acetolysis of 2-chloro-l,l,l-trifluoroethane [75-88-7] followed by hydrolysis (60). More recently, the hydrogenation of... [Pg.293]

In the former USSR, there reportedly are two technologies in use one is old anthrahydroquinone autoxidation technology and the other is closed-loop isopropyl alcohol oxidation technology. Production faciUties include several smaller, 100-150-t/yr isopropyl alcohol oxidation plants and a larger, 15,000-t/yr plant, which reportedly is being expanded to 30,000-t/yr. Differences in this technology as compared to the Shell Chemical Co. process are the use of oxygen-enriched air in the oxidation step and, catalytic reduction of the coproduct acetone back to isopropyl alcohol per equation 21. [Pg.477]

Other routes for hydroxybenzaldehydes are the electrolytic or catalytic reduction of hydroxybenzoic acids (65,66) and the electrolytic or catalytic oxidation of cresols (67,68). (see Salicylic acid and related compounds). Sahcylaldehyde is available in drums and bulk quantities. The normal specification is a freezing point minimum of 1.4°C. 4-Hydroxybenzaldehyde is available in fiber dmms, and has a normal specification requirement of a 114°C initial melting point. More refined analytical methods are used where the appHcation requires more stringent specifications. [Pg.507]

Ivermectin is the catalytic reduction product of avermectin, a macroHde containing a spiroketal ring system. Two other related antibiotics having significantly different stmctural features and biological properties, moxidectin and milbemycin oxime, were more recentiy introduced into the market. Although these compounds have no antimicrobial activity, they are sometimes referred to as antibiotics because they are derived from fermentation products and have very selective toxicities. They have potent activity against worms or helminths and certain ectoparasites such as mites and ticks. [Pg.476]

The yield of the more active RRR-a-tocopherol can be improved by selective methylation of the other tocopherol isomers or by hydrogenation of a-tocotrienol (25,26). Methylation can be accompHshed by several processes, such as simultaneous halo alkylation and reduction with an aldehyde and a hydrogen haUde in the presence of staimous chloride (27), amino alkylation with ammonia or amines and an aldehyde such as paraformaldehyde followed by catalytic reduction (28), or via formylation with formaldehyde followed by catalytic reduction (29). [Pg.147]

The isolation of the 6-deoxytetracyclines (44) led to other chemical modifications of (1). 6P-Deoxytetracycline [5614-03-9] (13), prepared by catalytic hydrogenolysis of tetracycline (1), resulting ia an iaversion (45) of the configuration at the C-6 position, but retention of antibacterial activity. Catalytic reduction (7,8) of the 6-methylene derivative (14) yields both the 6a-methyl (15) and 6P-methyl compound (13). The 6a-isomer (15) is reported (7,45) to be more active than the 6P isomer (13). The a-isomer, doxycycline (6), is an example of a semisynthetic tetracycline that has become commercially useful. [Pg.179]

Many other examples are known of non-selective reactions of halo groups in pyridopyridazines with amines, alkoxides, sulfur nucleophiles such as hydrosulfide and thiolate ions, or thiourea, hydrazine(s), cyanide ion and dimethyl sulfoxide, or on catalytic reduction. [Pg.242]

Selective Catalytic Reduction of Nitrogen Oxides The traditional approach to reducing ambient ozone concentrations has been to reduce VOC emissions, an ozone precurssor. In many areas, it has now been recognized that ehmination of persistent exceedances of the National Ambient Air Qnality Standard for ozone may reqnire more attention to reductions in the other ingredients in ozone formation, nitrogen oxides (NOJ. In such areas, ozone concentrations are controlled by NO rather than VOC emissions. [Pg.2195]

In a recent paper Pijpers et al. [2.42] have reviewed the application of XPS in the field of catalysis and polymers. Other recent applications of XPS to catalytic problems deal with the selective catalytic reduction of using Pt- and Co-loaded zeolites. Although the Al 2p line (Al from zeolite) and Pt 4/ line interfere strongly, the two oxidation states Pt and Pt " can be distinguished after careful curve-fitting [2.43]. [Pg.23]

Support for this suggestion comes from many quarters. Reduction of the jS-carboline anhydro-bases with sodium and alcohol or with tin and hydrochloric acid gives the 1,2,3,4-tetrahydro derivatives, as does catalytic reduction over platinum oxide in an alkaline medium. On the other hand, catalytic reduction with platinum oxide in acetic acid results in the formation of the 5,6,7,8-tetrahydro-j3-carbolinium derivatives (see Section III,A,2,a). It should be noted, however, that reduction of pyrido[l,2-6]indazole, in which the dipolar structure 211 is the main contributor to the resonance hybrid, could not be effected with hydrogen in the presence of Adams catalyst. [Pg.184]

Compound A, C H O, was found to be an optically active alcohol. Despite its apparent unsaturation, no hydrogen was absorbed on catalytic reduction over a palladium catalyst. On treatment of A with dilute sulfuric acid, dehydration occurred and an optically inactive alkene B, Q iH14, was produced as the major product. Alkene B, on ozonolysis, gave two products. One product was identified as propanal, CH3CH2CHO. Compound C, the other product, was shown to be a ketone, CgHgO. How many degrees of unsaturation does A have Write the reactions, and identify A, B, and C. [Pg.329]

Other forms of catalytic reduction apparatus which may be used in the laboratory have been described in the following articles.1... [Pg.16]

From the results of other authors should be mentioned the observation of a similar effect, e.g. in the oxidation of olefins on nickel oxide (118), where the retardation of the reaction of 1-butene by cis-2-butene was greater than the effect of 1-butene on the reaction of m-2-butene the ratio of the adsorption coefficients Kcia h/Kwas 1.45. In a study on hydrogenation over C03O4 it was reported (109) that the reactivities of ethylene and propylene were nearly the same (1.17 in favor of propylene), when measured separately, whereas the ratio of adsorption coefficients was 8.4 in favor of ethylene. This led in the competitive arrangement to preferential hydrogenation of ethylene. A similar phenomenon occurs in the catalytic reduction of nitric oxide and sulfur dioxide by carbon monoxide (120a). [Pg.43]

Selective catalytic reduction (SCR) and selective noncatalytic reduction processes (SNCR) are widely employed in large industrial and utility boiler plants, as well as in municipal waste incineration plants and other combustion processes. They are used to complement mechanical improvements (such as low NOx burners and furnace design modifications) as an aid to reducing the emission levels of NOx, S02, and other noxious gases into the atmosphere. [Pg.684]

Other S/N ligands have been investigated in the enantioselective catalytic reduction of ketones with borane. Thus, Mehler and Martens have reported the synthesis of sulfur-containing ligands based on the L-methionine skeleton and their subsequent application as new chiral catalysts for the borane reduction of ketones." The in situ formed chiral oxazaborolidine catalyst has been used in the reduction of aryl ketones, providing the corresponding alcohols in nearly quantitative yields and high enantioselectivities of up to 99% ee, as shown in Scheme 10.60. [Pg.338]

The mechanism of [3 + 2] reductive cycloadditions clearly is more complex than other aldehyde/alkyne couplings since additional bonds are formed in the process. The catalytic reductive [3 + 2] cycloaddition process likely proceeds via the intermediacy of metallacycle 29, followed by enolate protonation to afford vinyl nickel species 30, alkenyl addition to the aldehyde to afford nickel alkoxide 31, and reduction of the Ni(II) alkoxide 31 back to the catalytically active Ni(0) species by Et3B (Scheme 23). In an intramolecular case, metallacycle 29 was isolated, fully characterized, and illustrated to undergo [3 + 2] reductive cycloaddition upon exposure to methanol [45]. Related pathways have recently been described involving cobalt-catalyzed reductive cyclo additions of enones and allenes [46], suggesting that this novel mechanism may be general for a variety of metals and substrate combinations. [Pg.27]

Less, but still significant, information is available on the surface chemistry of other nitrogen oxides. In terms of N20, that molecule has been shown to be quite reactive on most metals on Rh(110), for instance, it decomposes between 60 and 190 K, and results in N2 desorption [18]. N02 is also fairly reactive, but tends to convert into a mixed layer of adsorbed NO and atomic oxygen [19] on Pd(lll), this happens at 180 K, and is partially inhibited at high coverages. Ultimately, though the chemistry of the catalytic reduction of nitrogen oxide emissions is in most cases controlled by the conversion of NO. [Pg.71]

A few additional points have also been raised by specific surface-science work concerning the catalytic reduction of NO. For instance, it has been widely recognized that the reaction is sensitive to the structure of the catalytic surface. It was determined that rough surfaces such as (110), or even (100), planes enhance NO dissociation over flatter (111) surfaces, and also favor N2 desorption instead of N20 production. On the other hand, NO dissociation leads to poisoning by the resulting atomic species, hence the faster reaction rates seen with medium-size vs. larger particles on model rhodium supported catalyst (the opposite appears to be true on palladium). Also, at least in the case of palladium, the formation of an isocyanate (-NCO) intermediate was identified... [Pg.90]


See other pages where Other Catalytic Reductions is mentioned: [Pg.331]    [Pg.437]    [Pg.296]    [Pg.219]    [Pg.219]    [Pg.331]    [Pg.437]    [Pg.296]    [Pg.219]    [Pg.219]    [Pg.9]    [Pg.391]    [Pg.385]    [Pg.76]    [Pg.429]    [Pg.473]    [Pg.353]    [Pg.289]    [Pg.298]    [Pg.112]    [Pg.287]    [Pg.94]    [Pg.1003]    [Pg.247]    [Pg.247]    [Pg.192]    [Pg.691]    [Pg.889]    [Pg.270]    [Pg.134]    [Pg.2]    [Pg.90]    [Pg.268]   


SEARCH



Catalytic reduction

Other Reductants

Reductive catalytic

© 2024 chempedia.info