Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ortho intermediate

When the ortho-para directing group is one with an unshared pair (this of course applies to most of them), there is another effect that increases the amount of para product at the expense of the ortho. A comparison of the intermediates involved (p. 683) shows that C is a canonical form with an ortho-quinoid structure, while D has a para-quinoid structure. Since we know that para-quinones are more stable than the ortho isomers, it seems reasonable to assume that D is more stable than C, and therefore contributes more to the hybrid and increases its stability compared to the ortho intermediate. [Pg.686]

Because the intermediate formed in para (or ortho) substitution of anisole is more stable than that formed in meta substitution of anisole or in substitution of benzene, the transition state leading to the para (or ortho) intermediate is more stable than the transition states for meta substitution of anisole or substitution of benzene itself... [Pg.658]

In the strongly basic medium, the reactant is the phenoxide ion high nucleophilic activity at the ortho and para positions is provided through the electromeric shifts indicated. The above scheme indicates theorpara substitution is similar. The intermediate o-hydroxybenzal chloride anion (I) may react either with a hydroxide ion or with water to give the anion of salicyl-aldehyde (II), or with phenoxide ion or with phenol to give the anion of the diphenylacetal of salicylaldehyde (III). Both these anions are stable in basic solution. Upon acidification (III) is hydrolysed to salicylaldehyde and phenol this probably accounts for the recovery of much unreacted phenol from the reaction. [Pg.692]

Why IS there such a marked difference between methyl and trifluoromethyl substituents m their influence on electrophilic aromatic substitution s Methyl is activating and ortho para directing trifluoromethyl is deactivating and meta directing The first point to remember is that the regioselectivity of substitution is set once the cyclohexadienyl cation intermediate is formed If we can explain why... [Pg.489]

When we examine the cyclohexadienyl cation intermediates involved m the nitra tion of (trifluoromethyl)benzene we And that those leading to ortho and para substitu tion are strongly destabilized... [Pg.492]

Attack at the meta position leads to a more stable intermediate than attack at either the ortho or the para position and so meta substitution predominates Even the inter mediate corresponding to meta attack however is very unstable and is formed with dif ficulty The trifluoromethyl group is only one bond farther removed from the positive charge here than it is m the ortho and para intermediates and so still exerts a significant although somewhat diminished destabilizing inductive effect... [Pg.493]

The greater stability of the intermediates arising from attack at the ortho and para posi tions compared with those formed by attack at the position meta to the oxygen sub stituent explains the ortho para directing property of hydroxyl alkoxy and acyloxy groups... [Pg.497]

Because the carbon atom attached to the ring is positively polarized a carbonyl group behaves m much the same way as a trifluoromethyl group and destabilizes all the cyclo hexadienyl cation intermediates m electrophilic aromatic substitution reactions Attack at any nng position m benzaldehyde is slower than attack m benzene The intermediates for ortho and para substitution are particularly unstable because each has a resonance structure m which there is a positive charge on the carbon that bears the electron withdrawing substituent The intermediate for meta substitution avoids this unfavorable juxtaposition of positive charges is not as unstable and gives rise to most of the product... [Pg.498]

Like hydroxyl groups and ammo groups however halogen substituents possess unshared electron pairs that can be donated to a positively charged carbon This electron donation into the TT system stabilizes the intermediates derived from ortho and from para attack... [Pg.501]

The carbon that bears the leaving group and a carbon ortho to it become equiva lent m the benzyne intermediate Thus when chlorobenzene 1 is the substrate the ammo group may be introduced with equal likelihood at either position... [Pg.984]

A benzyne intermediate is impossible because neither of the carbons ortho to the intended leaving group bears a proton... [Pg.1247]

Another indole/oxindole synthesis achieves the critical ortho-substitution by Sommelet-Hauser rearrangement of an anilinosiilfonium ion intermediate. Use of P-thioketones (G = R, an alkyl group) generates 2-substituted indoles, whereas P-thioesters (G = OR) lead to oxindoles. In each case, a 3-thio substituent must be removed by desulfuri2ation. [Pg.86]

Ring closure of o-benzoylbenzoic acid to anthraquinone is an unusual reaction in that normally it is not predicted to occur ortho to a keto group. Several theories have been proposed to explain the mechanism whereby this could possibly occur. One involves a complex ionization of o-benzoylbenzoic acid (41), the other favors the intermediate formation of 3-hydroxy-3-phenyl-l(3JT)isobenzofuranone (9) [64693-03-4] and 3-phenylphthaHdyl sulfate (10) (42) ... [Pg.423]

Early Synthesis. Reported by Kolbe in 1859, the synthetic route for preparing the acid was by treating phenol with carbon dioxide in the presence of metallic sodium (6). During this early period, the only practical route for large quantities of sahcyhc acid was the saponification of methyl sahcylate obtained from the leaves of wintergreen or the bark of sweet bitch. The first suitable commercial synthetic process was introduced by Kolbe 15 years later in 1874 and is the route most commonly used in the 1990s. In this process, dry sodium phenate reacts with carbon dioxide under pressure at elevated (180—200°C) temperature (7). There were limitations, however not only was the reaction reversible, but the best possible yield of sahcyhc acid was 50%. An improvement by Schmitt was the control of temperature, and the separation of the reaction into two parts. At lower (120—140°C) temperatures and under pressures of 500—700 kPa (5—7 atm), the absorption of carbon dioxide forms the intermediate phenyl carbonate almost quantitatively (8,9). The sodium phenyl carbonate rearranges predominately to the ortho-isomer. sodium sahcylate (eq. 8). [Pg.286]

Animals caimot synthesize the naphthoquinone ring of vitamin K, but necessary quantities are obtained by ingestion and from manufacture by intestinal flora. In plants and bacteria, the desired naphthoquinone ring is synthesized from 2-oxoglutaric acid (12) and shikimic acid (13) (71,72). Chorismic acid (14) reacts with a putative succinic semialdehyde TPP anion to form o-succinyl benzoic acid (73,74). In a second step, ortho-succmY benzoic acid is converted to the key intermediate, l,4-dihydroxy-2-naphthoic acid. Prenylation with phytyl pyrophosphate is followed by decarboxylation and methylation to complete the biosynthesis (75). [Pg.155]

In 1988, the United States consumption of monochlorobenzene was 120 million kilograms 42% for the production of nitrochlorobenzenes, 28% for solvent uses, and the remaining 30% for other appHcations such as diphenyl ether, ortho- and i ra-phenylphenols, sulfone polymers, and diphenyldichlorosilane, an intermediate for specialty siHcones. [Pg.49]

Monochlorobenzene. The largest use of monochlorobenzene in the United States is in the production of nitrochlorobenzenes, both ortho and para, which are separated and used as intermediates for mbber chemicals, antioxidants (qv), dye and pigment intermediates, agriculture products, and pharmaceuticals (Table 5). Since the mid-1980s, there have been substantial exports of both o-nitrochlorobenzene, estimated at 7.7 million kg to Europe and -nitrochlorobenzene, estimated at 9.5 million kg to the Far East. Solvent use of monochlorobenzene accounted for about 28% of the U.S. consumption. This appHcation involves solvents for herbicide production and the solvent for diphenylmethane diisocyanate manufacture and other chemical intermediates. [Pg.50]

Other apphcations for monochlorobenzene include production of diphenyl-ether, ortho- and i ra-phenylphenol, 4,4 -dichlorodiphenylsulfone, which is a primary raw material for the manufacture of polysulfones, diphenyldichlorosilane, which is an intermediate for specialty siUcones, Grignard reagents, and in dinitrochlorobenzene and catalyst manufacture. [Pg.50]

In the first case (22), almost stoichiometric amounts of sulfuric acid or chlorosulfonic acid are used. The amine sulfate or the amine chlorosulfate is, first, formed and heated to about 180 or 130°C, respectively, to rearrange the salt. The introduction of the sulfonic acid group occurs only in the ortho position, and an almost quantitative amount of l-aminoanthraquinone-2-sulfonic acid is obtained. On the other hand, the use of oleum (23) requires a large excess of SO to complete the reaction, and inevitably produces over-sulfonated compound such as l-amino-anthraquinone-2,4-disulfonic acid. Addition of sodium sulfate reduces the byproduct to a certain extent. Improved processes have been proposed to make the isolation of the intermediate (19) uimecessary (24,25). [Pg.310]

The enzyme catalyzes the hydrolysis of an amide bond linkage with water via a covalent enzyme-inhibitor adduct. Benzoxazinones such as 2-ethoxy-4H-3,l-benzoxazin-4-one [41470-88-6] (23) have been shown to completely inactivate the enzyme in a competitive and stoichiometric fashion (Eigure 5). The intermediate (25) is relatively stable compared to the enzyme-substrate adduct due to the electron-donating properties of the ortho substituents. The complex (25) has a half-life of reactivation of 11 hours. [Pg.324]

The synthetic procedure described is based on that reported earlier for the synthesis on a smaller scale of anthracene, benz[a]anthracene, chrysene, dibenz[a,c]anthracene, and phenanthrene in excellent yields from the corresponding quinones. Although reduction of quinones with HI and phosphorus was described in the older literature, relatively drastic conditions were employed and mixtures of polyhydrogenated derivatives were the principal products. The relatively milder experimental procedure employed herein appears generally applicable to the reduction of both ortho- and para-quinones directly to the fully aromatic polycyclic arenes. The method is apparently inapplicable to quinones having an olefinic bond, such as o-naphthoquinone, since an analogous reaction of the latter provides a product of undetermined structure (unpublished result). As shown previously, phenols and hydro-quinones, implicated as intermediates in the reduction of quinones by HI, can also be smoothly deoxygenated to fully aromatic polycyclic arenes under conditions similar to those described herein. [Pg.167]


See other pages where Ortho intermediate is mentioned: [Pg.392]    [Pg.560]    [Pg.560]    [Pg.560]    [Pg.560]    [Pg.383]    [Pg.186]    [Pg.1081]    [Pg.392]    [Pg.560]    [Pg.560]    [Pg.560]    [Pg.560]    [Pg.383]    [Pg.186]    [Pg.1081]    [Pg.270]    [Pg.490]    [Pg.977]    [Pg.979]    [Pg.430]    [Pg.67]    [Pg.99]    [Pg.115]    [Pg.239]    [Pg.401]    [Pg.401]    [Pg.59]    [Pg.59]    [Pg.277]    [Pg.50]    [Pg.177]    [Pg.341]    [Pg.343]    [Pg.97]    [Pg.394]   
See also in sourсe #XX -- [ Pg.258 , Pg.260 ]




SEARCH



© 2024 chempedia.info