Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Open tubular columns stationary phases

Although the exact mechanism is not very clear, the following factors may contribute to the modifier effect on chromatographic retention. Polar modifiers may cover the active sites of the stationary phase (deactivation) so that solute retention is reduced. This can be explained by the differences in retention change between packed and open-tubular columns when small amounts of modifiers were used. Open-tubular columns normally do not show the drastic changes in retention or efficiency upon the addition of small amounts (<2%) of modifier as most packed columns do. These less drastic differences were caused by the differences in the degree of deactivation of the packed column stationary phase as compared with the open-tubular-column stationary phase. An open-tubular column has fewer active sites present and, thus, fewer active sites are present for the modifier to deactivate. [Pg.1006]

System constants for open tubular column stationary phases at 120°C (Dependent variable log k)... [Pg.109]

In adsorption and partition chromatography, a continuous equilibration of solute between mobile and stationary phases occurs. Eluent goes into a column and eluate comes out. Columns may be packed with stationary phase or may be open tubular, with stationary phase bonded to the inner wall. In ion-exchange chromatogra-... [Pg.522]

An open tubular column in which the stationary phase is coated on the column s walls. [Pg.565]

The Liquid Phase. The stationary phase in an open tubular column is generally coated or chemically bonded to the wall of the capillary column in the same way the phase is attached to the support of a packed column. These are called nonbonded and bonded phases, respectively. In capillary columns there is no support material or column packing. [Pg.106]

Excellent open tubular columns may now be purchased, providing a number of stationary phases of differing polarity on WCOT and SCOT columns, and whose efficiency, greatly improved sample detectability, and thermal stability surpass those exhibited by packed columns their chief disadvantage is that they have a lower sample capacity than packed columns.65,66... [Pg.240]

Figure 1.4 Variation of the resistance to mass transfer in the mobile phase, C , and stationary phase, Cj, as a function of the capacity factor for open tubular columns of different internal diameter (cm) and film thickness. A, df 1 micrometer and D, 5 x 10 cm /s B, df 5 micrometers and D, 5 x 10 cm /s and C, df - 5 Micrometers and 0, 5 x 10 cm /s. Figure 1.4 Variation of the resistance to mass transfer in the mobile phase, C , and stationary phase, Cj, as a function of the capacity factor for open tubular columns of different internal diameter (cm) and film thickness. A, df 1 micrometer and D, 5 x 10 cm /s B, df 5 micrometers and D, 5 x 10 cm /s and C, df - 5 Micrometers and 0, 5 x 10 cm /s.
In practice, it is more difficult to optimize resolution as a function of the relative retentlvity than to optimize retention. Thus, unless the mixture is very complex or contains components that are particularly difficult to separate it may be possible to optimize a particular separation using the linear equation (1.72) as demonstrated by Bttre [177]. Figure 1.13 illustrates the relative change in peak position for a polarity test mixture with two identical, serially coupled open tubular columns, coated with a poly(dimethylslloxane) and Carbowax 20 M stationary phases, as a function of their relative retentlvity on the second column. The linear relationship predicted by equation (1.72) effectively predicts the relative peak positions and indicates that a nearly... [Pg.35]

The possibility of obtaining significant improvements in performance by using semi-packed and open tubular columns is clearly illustrated by the values for the separation impedance in Table 1.17. Variation of the reduced plate height with the reduced velocity for an open tubular column is given by equation (1.82), assuming that the resistance to mass transfer in the stationary phase can be neglected... [Pg.44]

Numerous materials have been used to fabricate open tubular columns. Most early studies were conducted using stainless steel tubing and later nickel tubing of capillary dimensions [147-149]. These materials had rough inner surfaces (leading to non-uniform stationary phase films), metal and oxide impurities at their surface which were a cause of adsorption, tailing, and/or decomposition of polar solutes and because their walls were thick, thermal Inertia that prevented the use of fast temperature programming. None of these materials are widely used today. [Pg.72]

RELATIVE CONTRIBUTION (PERCENTAGE BASIS) OF MASS TRANSFER RESISTANCE IN THE MOBILE AMD STATIONARY PHASE TO COLUMN PLATE HEIGHT FOR A SERIES OF 0.32 mm I.D. OPEN TUBULAR COLUMNS USING UMDECAME AT 130 C AS THE TEST SOLUTE... [Pg.535]

Virtually all current research in SFC utilizes either small bore packed columns with particles of 5-10 micrometers in diameter optimized for use in liquid chromatography or narrow bore, fused silica open tubular columns with Immobilized phases similar to those used in gas chromatography. In the latter case columns of saaller internal diameter, 10-100 micrometers, shorter lengths (generally less than 20 m with 1-10 m being the most common length), and more firmly crosslinked stationary phases are used by coaparison with standard columns for gas chromatography. In all... [Pg.819]

Another way to improve the performance of open-tubular columns was suggested by Sawada and Jinno [83]. They first vinylized the inner surface of a 25 pm i.d. capillary and then performed in situ copolymerization of f-butylacryl-amide and 2-acrylamido-2-methyl-l-propanesulfonic acid (AMPS) to create a layer of polymeric stationary phase. This process does not currently allow good control over the homogeneity of the layer and the column efficiencies achieved in CEC separations of hydrocarbons were relatively low. These authors also recently thoroughly reviewed all the aspects of the open tubular CEC technologies [84]. [Pg.24]

Extensive comparisons between GC and SFC have been reported in chiral separation [63-66]. Zoltan investigated the performance of SFC and GC using the same chiral capillary columns coated with cyclodextrin-based stationary phases. It was observed that chiral selectivity was higher in GC than in SFC using the same open tubular column at the identical temperature (e.g., >100°C). However, the selectivity in SFC was significantly increased at low temperatures, especially for polar compounds [67]. [Pg.220]

An open-tubular column is a capillary bonded with a wall-supported stationary phase that can be a coated polymer, bonded molecular monolayer, or a synthesized porous layer network. The inner diameters of open-tubular CEC columns should be less than 25 pm that is less than the inner diameters of packed columns. The surface area of fused silica tubing is much less than that of porous packing materials. As a result, the phase ratio and, hence, the sample capacity for open-tubular columns are much less than those for packed columns. The small sample capacity makes it difficult to detect trace analytes. [Pg.451]

One way to increase the phase ratio of open-tubular columns is to use a polymeric stationary phase instead of a bonded molecular monolayer (Figure 6). [Pg.451]

Such columns can be used for the CEC separation of small neutral compounds. The problem with this type of open-tubular column, however, is the low efficiency obtained due to the small diffusion coefficients of the analytes in the polymeric stationary phase, and the heterogeneous film structure caused by Rayleigh instability. [Pg.451]

Compared to packed columns, open-tubular columns have no bubble formation problems because end-frits are not needed, small internal diameter columns are used, and the stationary phase is homogeneous. The column length can also be easily shortened. Excellent mass sensitivity can be achieved by using capillaries with smaller inner diameters. The EOF in an open-tubular column is higher than that in a packed column because a greater... [Pg.451]


See other pages where Open tubular columns stationary phases is mentioned: [Pg.108]    [Pg.108]    [Pg.113]    [Pg.609]    [Pg.612]    [Pg.779]    [Pg.780]    [Pg.329]    [Pg.239]    [Pg.16]    [Pg.46]    [Pg.81]    [Pg.83]    [Pg.104]    [Pg.112]    [Pg.420]    [Pg.464]    [Pg.544]    [Pg.553]    [Pg.577]    [Pg.592]    [Pg.687]    [Pg.184]    [Pg.106]    [Pg.220]    [Pg.229]    [Pg.230]    [Pg.392]    [Pg.55]    [Pg.85]    [Pg.81]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Open columns

Open tubular

Open tubular columns

Stationary Phases for Porous-Layer Open Tubular Columns

Stationary phases for wall coated open tubular columns

© 2024 chempedia.info