Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin mixture, polymerization

Polyolefins with vinyl end groups can be readily transformed into end-functionalized polyolefins by post-polymerization functionalization to yield a wide variety of end-functionalized polyolefins, which include epoxy-, amine-, and hydroxy-terminated polyolefins. Brookhart, Gibson, and co-workers reported on diimine-pyridine-ligated Fe complexes incorporating sterically less hindered alkyl substituents such as a methyl group ortho to the imine-A s, F12-1, that selectively converted ethylene to oligomers, affording linear a-olefin mixtures (>99%) (see also Section... [Pg.724]

In the multiple zone process an olefin mixture is polymerized in a first reaction zone to produce a pre-polymer that has a lower molecular weight up to 35-65% the final conversion. After this step, volatile materials, such as hydrogen, are removed. The polymerization continues in a second reaction zone by adding more of the olefin mixture to produce the final polymer with a higher molecular weight (6). [Pg.77]

The recent use of large quantities of synthetic detergents has created an increased demand for dodecene, or tetramer. This is currently being produced by catalytically polymerizing four or five molecules of propylene to form a Ci2-C olefinic mixture. [Pg.220]

Ring-opening Olefin Metathesis Polymerization (ROMP) gives a mixture of linear high molecular weight polymer and a series of cyclic oligomers for a number... [Pg.49]

Schrock, Gibson et al. [52d] found that styrene and 1,3-pentadiene could be used as chain transfer reagents for the living ring-opening olefin metathesis polymerization of norbornene with molybdenum based catalyst 35a. Renewed norbornene addition to a polymerization mixture containing initiator 35a and 30 equivalents of styrene resulted in the formation of polynorbomene with a low polydispersity and a molecular weight controlled by the number of norbornene equivalents in each of the individual monomer solutions, Eq. (38). This method allows a more efficient use of the catalyst. [Pg.63]

The reaction is applied in industrial processes (Phillips triolefin process. Shell higher olefin process) and has importance in ring opening-metathesis polymerization (ROMP) in polymer chemistry [1]. In the past, olefin metathesis was not commonly applied in organic synthesis [2] because of the reversibility of the reaction, leading to olefin mixtures. In contrast, industrial processes often handle product mixtures easily. In ROMP, highly strained cyclic olefins allow the equilibrium of the reaction to be shifted towards the product side. [Pg.91]

His proposal involved a metal carbene and a metallocyclobutane intermediate and was the first proposed mechanism consistent with all experimental observations to date. Later, Grubbs and coworkers performed spectroscopic studies on reaction intermediates and confirmed the presence of the proposed metal carbene. These results, along with the isolation of various metal alkyli-dene complexes from reaction mixtures eventually led to the development of well-defined metal carbene-containing catalysts of tungsten and molybdenum [23-25] (Fig. 2). After decades of research on olefin metathesis polymerization, polymer chemists started to use these well-defined catalysts to create novel polymer structures, while the application of metathesis in small molecule chemistry was just beginning. These advances in the understanding of metathesis continued, but low catalyst stability greatly hindered extensive use of the reaction. [Pg.4]

There are claims that terpolymers of ethylene, propylene, and MA (mol % 47 50 3) can be produced by a continuous process in hexane solution with a modified Ziegler catalyst (ethyl aluminum dichloride-vanadyl trichloride).For the procedure, a carbon tetrachloride solution of the anhydride was added to the reaction mixture after copolymerization of the olefin mixture was well established. The copolymers, obtained by this technique as sticky glasses, have not had adequate study. Also fundamentals of the polymerization reaction have not been explored. [Pg.294]

The presumed 14 electron Ti(C5Me5)(2,4-C7Hn), Ti(Ph2CH)2, and Ti(Ph2C-SiMc3)2 complexes (Section IIIA), as well as a variety of other open and half-open titanocenes, have been reported to yield, upon activation with MAO and/or poorly coordinating borate ions, catalysts for the polymerization of ethylene/a-olefin mixtures, styrene, vinylcyclohexane, vinylcyclohexene, butadiene, and related spedes." The polystyrene was isolated predominately in the syndiotactic form. [Pg.193]

It was not fully realized until my breakthrough using superacids (vide infra) that, to suppress the deprotonation of alkyl cations to olefins and the subsequent formation of complex mixtures by reactions of olefins with alkyl cations, such as alkylation, oligomerization, polymerization, and cyclization, acids much stronger than those known and used in the past were needed. [Pg.75]

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

Polygas Olefins. Refinery propylene and butenes are polymerized with a phosphoric acid catalyst at 200°C and 3040—6080 kPa (30—60 atm) to give a mixture of branched olefins up to used primarily in producing plasticizer alcohols (isooctyl, isononyl, and isodecyl alcohol). Since the olefins are branched (75% have two or more CH groups) the alcohols are also branched. Exxon, BASE, Ruhrchemie (now Hoechst), ICl, Nissan, Getty Oil, U.S. Steel Chemicals (now Aristech), and others have all used this olefin source. [Pg.458]

Other applications of zirconium tetrafluoride are in molten salt reactor experiments as a catalyst for the fluorination of chloroacetone to chlorofluoroacetone (17,18) as a catalyst for olefin polymerization (19) as a catalyst for the conversion of a mixture of formaldehyde, acetaldehyde, and ammonia (in the ratio of 1 1 3 3) to pyridine (20) as an inhibitor for the combustion of NH CIO (21) in rechargeable electrochemical cells (22) and in dental applications (23) (see Dentalmaterials). [Pg.262]

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

A mixture of (C H ) , TiCl, and AlCl is useful for polymerizing C —olefins (85). The dimerization of propylene is accompHshed by using catalysts such as Ni(PR2)4 (86). Alkylphosphines such as / fZ-butylphosphine [2501-94-2] have been proposed as a substitute for high purity phosphine in the production of the semiconductor gallium phosphide (87). [Pg.380]

In the production of a-olefins, ethylene reacts with an aluminum alkyl at relatively low temperature to produce a higher aLkylalumiaum. This is then subjected to a displacement reaction with ethylene at high temperatures to yield a mixture of a-olefins and triethylalumiaum. In an alternative process, both reactions are combiaed at high temperatures and pressures where triethylalumiaum fuactioas as a catalyst ia the polymerization process. [Pg.433]

To obtain light ends conversion, alkylation and polymerization are used to increase the relative amounts of liquid fuel products manufactured. Alkylation converts olefins, (propylene, butylenes, amylenes, etc.), into high octane gasoline by reacting them with isobutane. Polymerization involves reaction of propylene and/or butylenes to produce an unsamrated hydrocarbon mixture in the motor gasoline boiling range. [Pg.10]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]


See other pages where Olefin mixture, polymerization is mentioned: [Pg.242]    [Pg.521]    [Pg.1092]    [Pg.155]    [Pg.215]    [Pg.429]    [Pg.2466]    [Pg.373]    [Pg.174]    [Pg.162]    [Pg.205]    [Pg.218]    [Pg.22]    [Pg.855]    [Pg.242]    [Pg.1092]    [Pg.1092]    [Pg.289]    [Pg.375]    [Pg.397]    [Pg.397]    [Pg.399]    [Pg.430]    [Pg.159]    [Pg.173]    [Pg.66]    [Pg.455]    [Pg.220]    [Pg.225]    [Pg.972]    [Pg.320]    [Pg.322]    [Pg.89]   
See also in sourсe #XX -- [ Pg.210 ]




SEARCH



Olefin polymerization

Polymeric mixtures

Polymerization mixture

© 2024 chempedia.info