Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Norbornene, addition

Schrock, Gibson et al. [52d] found that styrene and 1,3-pentadiene could be used as chain transfer reagents for the living ring-opening olefin metathesis polymerization of norbornene with molybdenum based catalyst 35a. Renewed norbornene addition to a polymerization mixture containing initiator 35a and 30 equivalents of styrene resulted in the formation of polynorbomene with a low polydispersity and a molecular weight controlled by the number of norbornene equivalents in each of the individual monomer solutions, Eq. (38). This method allows a more efficient use of the catalyst. [Pg.63]

These nickel-hased compounds with P-O ligands also proved to he capable of ter-polymerizing norbornenes and ethylene with 1-alkenes. As in copolymerizations with ethylene, the level of incorporation of 5- -butylnorbornene in the terpoly-mers was lower than that of norbornene. Additionally, the molecular weights obtained were lower, suggesting that the incorporation of the 1-alkene facilitates chain termination. [Pg.147]

The crudest interpretation of the norbornene addition data would be simply to take the catalyst which makes the longest chains in the gas-phase as the best catalyst. However, a more detailed examination of the relative intensities, modeled with a simple kinetic model, allows the determination of the relative rates of addition of the first norbornene unit versus all subsequent norbornene units (Scheme 4.12). [Pg.128]

Three-component coupling with vinylstannane. norbornene (80). and bro-mobenzene affords the product 91 via oxidative addition, insertion, transme-tallation, and reductive elimination[85]. Asymmetric multipoint control in the formation of 94 and 95 in a ratio of 10 1 was achieved by diastereo-differ-entiative assembly of norbornene (80), the (5 )-(Z)-3-siloxyvinyl iodide 92 and the alkyne 93, showing that the control of four chiralities in 94 is possible by use of the single chirality of the iodide 92. The double bond in 92 should be Z no selectivity was observed with E form[86]. [Pg.141]

In a manner analogous to classic nitrile iinines, the additions of trifluoro-methylacetonitrile phenylimine occur regiospecifically with activated terminal alkenes but less selectively with alkynes [39], The nitnle imine reacts with both dimethyl fumarate and dimethyl maleate m moderate yields to give exclusively the trans product, presumably via epimenzation of the labile H at position 4 [40] (equation 42) The nitrile imine exhibits exo selectivities in its reactions with norbornene and norbornadiene, which are similar to those seen for the nitrile oxide [37], and even greater reactivity with enolates than that of the nitnle oxide [38, 41], Reactions of trifluoroacetomtrile phenyl imine with isocyanates, isothiocyanates, and carbodiimides are also reported [42]... [Pg.811]

Early work established that S4N4 forms di-adducts with alkenes such as norbornene or norbomadiene. Subsequently, structural and spectroscopic studies established that cycloaddition occurs in a 1,3-S,S"-fashion. The regiochemistry of addition can be rationalized in frontier orbital terms the interaction of the alkene HOMO with the low-lying LUMO of S4N4 exerts kinetic control. Consistently, only electron-rich alkenes add to S4N4. [Pg.69]

The procedure given above is applied to norbornene. However, the formation of the alcohol is accompanied by formation of moderate amounts of the acetate. Therefore, the dried tetrahydrofuran solution of the alcohol-acetate mixture is treated with 0.4 g (O.OI mole) of lithium aluminum hydride dissolved in 10 ml ofTHF. The excess hydride is decomposed by careful addition of water, followed by filtration, drying of the organic solution, and evaporation of the solvent. The residue is almost pure (>99.8%) exo-1-norborneol. It may be purified by direct distillation, bp 178-17971 atm, crystallizing slowly on cooling, mp 127-128°. [Pg.62]

A 500-ml flask is equipped with a thermometer, a magnetic stirrer, and a dropping funnel, and all openings are protected by drying tubes. The system is flushed with nitrogen and a solution of 2.84 g (0.075 mole) of sodium borohydride in 150 ml of diglyme is introduced followed by 28.3 g (0.30 mole) of norbornene. The flask is immersed in an ice-water bath and the hydroboration is achieved by the dropwise addition of 27.4 ml (0.10 mole) of boron trifluoride diglymate. The solution is stirred... [Pg.111]

A dry 5(X)-mI flask equipped with a thermometer, pressure-equalizing dropping funnel, and magnetic stirrer is flushed with nitrogen and then maintained under a static pressure of the gas. The flask is charged with 50 ml of tetrahydrofuran and 13.3 ml (0.15 mole) of cyclopentene, and then is cooled in an ice bath. Conversion to tricyclo-pentylborane is achieved by dropwise addition of 25 ml of a 1 M solution of diborane (0.15 mole of hydride see Chapter 4, Section 1 for preparation) in tetrahydrofuran. The solution is stirred for 1 hour at 25° and again cooled in an ice bath, and 25 ml of dry t-butyl alcohol is added, followed by 5.5 ml (0.05 mole) of ethyl bromoacetate. Potassium t-butoxide in /-butyl alcohol (50 ml of a 1 M solution) is added over a period of 10 minutes. There is an immediate precipitation of potassium bromide. The reaction mixture is filtered from the potassium bromide and distilled. Ethyl cyclopentylacetate, bp 101730 mm, 1.4398, is obtained in about 75% yield. Similarly, the reaction can be applied to a variety of olefins including 2-butene, cyclohexene, and norbornene. [Pg.115]

Formation of mixtures of products in these reactions can be attributed largely to the properties of the acetate group. The reactions of a number of cycloalkenes with thallium(III) salts have been investigated in some detail and the results obtained have served both to elucidate the stereochemistry of oxythallation and to underline the important role assumed by the anion of the metal salt in these oxidations. The most unambiguous evidence as to the stereochemistry of oxythallation comes from studies by Winstein on the oxythallation of norbornene (VII) and norbornadiene (VIII) with thal-lium(III) acetate in chloroform, in which the adducts (IX) and (X) could be precipitated from the reaction mixture by addition of pentane 128) (Scheme 11). Both by chemical means and by analogy with the oxymercuration... [Pg.180]

The peroxide-catalysed addition of dimethyl phosphonate to norborna-diene gives nortricyclenes as well as norbornenes. Usually, radicals react with this diene to give only nortricyclene derivatives. The ease of hydrogen abstraction from the parent phosphonate undoubtedly favours trapping of radical (8). [Pg.232]

Notably, half of the tertiary product was the telomer 8, which incorporates an additional equivalent of olefin. In contrast, the Pt(0) precatalyst Pt(norbornene)3 (0.2 mol%) gave a 10 1 mixture of tertiary phosphine 9 and telomer 8 over 11 h at 5 5°C in toluene (Scheme 5-10, Eq. 2). The selectivity was higher (>95%) when only the final step [addition of PH(CH2CH2C02Et)2 to ethyl acrylate] was monitored by NMR. In contrast, Pt[P(CH2CH2CF3)3]2(norbomene) did not catalyze addition of PH, to CH2=CHCF3 thus, the olefin must be a Michael acceptor. [11]... [Pg.149]

Ring strain enhances alkene reactivity. Norbornene, for example, undergoes rapid addition of TFA at 0° C.12... [Pg.294]

Norbornene, in contrast reacts by syn addition.23 This is believed to occur by internal transfer of the nucleophile. [Pg.296]

Apart from the role of substituents in determining regioselectivity, several other structural features affect the reactivity of dipolarophiles. Strain increases reactivity norbornene, for example, is consistently more reactive than cyclohexene in 1,3-DCA reactions. Conjugated functional groups usually increase reactivity. This increased reactivity has most often been demonstrated with electron-attracting substituents, but for some 1,3-dipoles, enol ethers, enamines, and other alkenes with donor substituents are also quite reactive. Some reactivity data for a series of alkenes with several 1,3-dipoles are given in Table 10.6 of Part A. Additional discussion of these reactivity trends can be found in Section 10.3.1 of Part A. [Pg.529]

The stereoselectivity of epoxidation with peroxycarboxylic acids has been well studied. Addition of oxygen occurs preferentially from the less hindered side of the molecule. Norbornene, for example, gives a 96 4 exo endo ratio.76 In molecules where two potential modes of approach are not very different, a mixture of products is formed. [Pg.1092]

A carbazole-functionalized norbornene derivative, 5-CN-carbazoyl methy-lene)-2-norbornene, CbzNB, was polymerized via ROMP using the ruthenium catalyst Cl2Ru(CHPh)[P(C6Hii)3]2 [100]. The polymerization was conducted in CH2C12 at room temperature, to afford products with polydispersity indices close to 1.3. Subsequent addition of 5-[(trimethylsiloxy)methylene]-2-norbornene showed a clear shift of the SEC trace of the initial polymer, indicating that a diblock copolymer was efficiently prepared in high yield. [Pg.54]

Synthesis of block copolymers of norbornene derivatives, with different side groups, has been reported via ROMP [101]. Initially, exo-N-bulyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide was polymerized in acetone at room temperature with a ruthenium initiator (Scheme 40). The conversion of the reaction was quantitative. Subsequent addition of norbornene derivative carrying a ruthenium complex led to the formation of block copolymers in 85% yield. Due to the presence of ruthenium SEC experiments could not be performed. Therefore, it was not possible to determine the molecular weight... [Pg.55]

The living character of the ROMP promoted by the initiator Ru(CHPh)(Cl)2 (PCy3)2 (Cy = cyclohexane) was tested with the synthesis of diblock, triblock, and tetrablock copolymers of norbornene derivatives carrying acetyl-protected glucose, [2,3,4,6-tetra-O-acetyl-glucos-l-O-yl 5-norbornene-2-carboxylate], A or maltose groups, [2,3,6,2/,3/,4/,6/-hepta-0-acetyl-maltos-1-O-yl 5-norbornene-2-carboxylate], B, shown in Scheme 41 [102]. The AB, ABA, and ABAB structures were prepared by sequential addition of monomers with narrow molecular weight distributions to quantitative conversions. [Pg.56]

In a series of experiments using various pressures of CO and H 0, with norbornadiene as the diene /44, 45/, we were able to verify an earlier suggestion /43/ that the 1,2 addition product norbornene is formed through a diene dissociation (Equation 43) and the 1,5 addition product nortricyclene through a CO dissociation (Equation 42). [Pg.156]

Confirmation that the polymerizations proceed via metallacyclic intermediates was obtained by studying the ROMP of functionalized 7-oxanorbornadienes. These polymerize slower than their norbornene analogs, allowing NMR identification of the metallacyclobutane resonances and subsequent monitoring of ring opening to the first insertion product. In addition, the X-ray crystallographic structure of complex (212) has been reported.533... [Pg.30]

The interest in catalyst recyclability has led to the development of biphasic catalysts for hydro-boration.22 Derivitization of Wilkinson s catalyst with fluorocarbon ponytails affords [Rh(P (CH2)2(CF2)5CF3 3)3Cl] which catalyzes FIBcat addition to norbornene in a mixture of C6FnCF3 and tetrahydrofuran (TF1F) or toluene (alternatively a nonsolvent system can be used with just the fluorocarbon and norbornene) to give exo-norborneol in 76% yield with a turnover number up to 8,500 (Scheme 4). Mono-, di- and trisubstituted alkenes can all be reacted under these conditions. The catalyst can be readily recycled over three runs with no loss of activity.23... [Pg.268]

A range of rhodium complexes have been studied as hydroamination catalysts. Treatment of norbornene with a mixture of aniline and lithium anilide in the presence of [Rh(PEt3)2Cl]2 at 70 °C for over 1 week yields the exo addition product in ca. 15% yield.165... [Pg.291]

Hydrophosphination of ethyl acrylate using PH3 (R = C02Me, Equation (17)) is catalyzed by a mixture of the zero-valent platinum complexes (72a c), which are formed upon addition of P CH2CH2C02Et 3 to Pt(norbornene)3] (Scheme 44). Failure of these complexes to bring about P H addition to CH2 = CHCF3 indicates that Michael activation of the alkene through I and R effects of the substituents is crucial for catalytic activity in this class of metal complexes.190... [Pg.297]

Unlike the oxymercuration of acyclic olefins, oxymercuration of bicyclic olefins often gives jy -addition products. Norbornenes 93, for example, show exclusive fvo-oxymercuration. In this reaction, the ratio between the isomers depends on the nature of the fvo-substituent (R1) and tro/o-substituent (R2) (Equation (36)). The presence of electron-withdrawing fvo-substituents always leads to a much greater selectivity in favor of 94a-d over 95a-d.116 117 As indicated by extensive theoretical calculations, the charge distribution in the transition states governs the selectivity of these reactions.118... [Pg.435]

We have reported the first example of a ring-opening metathesis polymerization in C02 [144,145]. In this work, bicyclo[2.2.1]hept-2-ene (norbornene) was polymerized in C02 and C02/methanol mixtures using a Ru(H20)6(tos)2 initiator (see Scheme 6). These reactions were carried out at 65 °C and pressure was varied from 60 to 345 bar they resulted in poly(norbornene) with similar conversions and molecular weights as those obtained in other solvent systems. JH NMR spectroscopy of the poly(norbornene) showed that the product from a polymerization in pure methanol had the same structure as the product from the polymerization in pure C02. More interestingly, it was shown that the cis/trans ratio of the polymer microstructure can be controlled by the addition of a methanol cosolvent to the polymerization medium (see Fig. 12). The poly(norbornene) prepared in pure methanol or in methanol/C02 mixtures had a very high trans-vinylene content, while the polymer prepared in pure C02 had very high ds-vinylene content. These results can be explained by the solvent effects on relative populations of the two different possible metal... [Pg.133]

Similar to the addition of secondary phosphine-borane complexes to alkynes described in Scheme 6.137, the same hydrophosphination agents can also be added to alkenes under broadly similar reaction conditions, leading to alkylarylphosphines (Scheme 6.138) [274], Again, the expected anti-Markovnikov addition products were obtained exclusively. In some cases, the additions also proceeded at room temperature, but required much longer reaction times (2 days). Treatment of the phosphine-borane complexes with a chiral alkene such as (-)-/ -pinene led to chiral cyclohexene derivatives through a radical-initiated ring-opening mechanism. In related work, Ackerman and coworkers described microwave-assisted Lewis acid-mediated inter-molecular hydroamination reactions of norbornene [275]. [Pg.198]

The side products of the reaction between benzoylnitromethane 279 and dipolarophiles (norbornene, styrene, and phenylacetylene) in the presence of l,4-diazabicyclo[2.2.2]octane (DABCO) were identified as furazan derivatives (Scheme 72). The evidence reported indicates that benzoylnitromethane gives the dibenzoylfuroxan as a key intermediate, which is the dimerization product of the nitrile oxide. The furoxan then undergoes addition to the dipolarophile, hydrolysis, and ring rearrangement to the final products (furazans and benzoic acid) <2006EJ03016>. [Pg.371]


See other pages where Norbornene, addition is mentioned: [Pg.123]    [Pg.123]    [Pg.311]    [Pg.54]    [Pg.70]    [Pg.797]    [Pg.1059]    [Pg.226]    [Pg.333]    [Pg.67]    [Pg.845]    [Pg.797]    [Pg.1059]    [Pg.57]    [Pg.532]    [Pg.24]    [Pg.16]    [Pg.34]    [Pg.276]    [Pg.280]    [Pg.175]   
See also in sourсe #XX -- [ Pg.329 , Pg.355 , Pg.367 ]




SEARCH



Addition-curing norbornene

Norbornen

Norbornene

Norbornene addition reactions

Norbornenes addition 4- carbenes

Norbornenes addition reactions

© 2024 chempedia.info