Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oils and Water

Crude oil and products of the petroleum industry frequently are subjected to spectroscopic analysis to determine trace metal concentrations. It is important to the industry to know trace element concentrations in crude oil since some trace elements can poison the catalysts used in the cracking process. Some of the particularly critical trace elements are vanadium, copper, nickel, and iron. [Pg.207]

Oil analysis may be performed by first ashing the sample, but a simpler technique is to use the rotating electrode. Sample preparation is a minimum and excellent precision is possible. Comparison standards are commercially available for routine studies. [Pg.207]

Water analyses are performed to determine trace element concentrations and aid in judging water quality. Underground water samples can be analyzed to aid in mapping the flow of underground water. The petroleum industry frequently uses such methods as an aid to geological exploration. [Pg.208]


Viscosity is measured in poise. If a force of one dyne, acting on one cm, maintains a velocity of 1 cm/s over a distance of 1 cm, then the fluid viscosity is one poise. For practical purposes, the centipoise (cP) is commonly used. The typical range of gas viscosity in the reservoir is 0.01 - 0.05 cP. By comparison, a typical water viscosity is 0.5 -I.OcP. Lower viscosities imply higher velocity for a given pressure drop, meaning that gas in the reservoir moves fast relative to oils and water, and is said to have a high mobility. This is further discussed in Section 7. [Pg.107]

This property is useful in helping to define the interface between fluids. The intercept between the gas and oil gradients indicates the gas-oil contact (GOG), while the intercept between the oil and water gradients indicates the free water level (FWL) which is related to the oil water contact (OWC) via the transition zone, as described in Section 5.9. [Pg.117]

A well known example of capillary-buoyancy equilibrium is the experiment in which a number of glass tubes of varying diameter are placed into a tray of water. The water level rises up the tubes, reaching its highest point in the narrowest of the tubes. The same observation would be made if the fluids in the system were oil and water rather than air and water. [Pg.120]

If a pressure measuring device were run inside the capillary, an oil gradient would be measured in the oil column. A pressure discontinuity would be apparent across the interface (the difference being the capillary pressure), and a water gradient would be measured below the interface. If the device also measured resistivity, a contact would be determined at this interface, and would be described as the oil-water contact (OWC). Note that if oil and water pressure measurements alone were used to construct a pressure-depth plot, and the gradient intercept technigue was used to determine an interface, it is the free water level which would be determined, not the OWC. [Pg.123]

Finally, it is worth remembering the sequence of events which occur during hydrocarbon accumulation. Initially, the pores in the structure are filled with water. As oil migrates into the structure, it displaces water downwards, and starts with the larger pore throats where lower pressures are required to curve the oil-water interface sufficiently for oil to enter the pore throats. As the process of accumulation continues the pressure difference between the oil and water phases increases above the free water level because of the density difference between the two fluids. As this happens the narrower pore throats begin to fill with oil and the smallest pore throats are the last to be filled. [Pg.124]

Gas has a much higher compressibility than oil or water, and therefore expands by a relatively large amount for a given pressure drop. As underground fluids are withdrawn (i.e. production occurs), any free gas present expands readily to replace the voidage, with only a small drop in reservoir pressure. If only oil and water were present in the reservoir system, a much greater reduction in reservoir pressure would be experienced for the same amount of production. [Pg.184]

The above experiment was conducted for a single fluid only. In hydrocarbon reservoirs there is always connate water present, and commonly two fluids are competing for the same pore space (e.g. water and oil in water drive). The permeability of one of the fluids is then described by its relative permeability (k ), which is a function of the saturation of the fluid. Relative permeabilities are measured in the laboratory on reservoir rock samples using reservoir fluids. The following diagram shows an example of a relative permeability curve for oil and water. For example, at a given water saturation (SJ, the permeability... [Pg.202]

Unstable displacement is clearly less preferable, since a mixture of oil and water is produced much earlier than in the stable displacement situation, and some oil may be left unrecovered at the abandonment condition which may be dictated by a maximum water cut. [Pg.204]

If oil and water are mixed as an emulsion, dehydration becomes much more difficult. Emulsions can form as oil-in-water or water-in-oil if mixed production streams are subjected to severe turbulence, as might occur in front of perforations in the borehole. Emulsions can be encouraged to break (or destabilise) using chemicals, heat or just gentle agitation. Chemical destabilisation is the most common method and laboratory tests would normally be conducted to determine the most suitable combination of chemicals. [Pg.248]

A promising technique currently under development is downhole separation whereby a device similar to a hydrocyclone separates oil and water in the well bore. The water is subsequently compressed into a zone beneath the producing interval and only the oil is produced to surface. [Pg.361]

In high permeability reservoirs, wells may produce dry oil for a limited time following a shut-in period, during which gravity forces have segregated oil and water near the wellbore. In fields with more production potential than production capacity, wells can be alternately produced and shut in (intermittentproduction) to reduce the field water cut. This may still be an attractive option at reduced rates very late in field life, if redundant facilities can be decommissioned to reduce operating costs. [Pg.362]

After having proved the principles a dynamic test facility has been constructed. In this facility it is possible to inject 3 tracers in a flownng liquid consisting of air, oil and water. By changing the relative amounts of the different components it is possible to explore the phase diagram and asses the limits for the measurement principle. Experiments have confirmed the accuracy in parameter estimation to be below 10%, which is considered quite satisfactorily for practical applications. The method will be tested on site at an offshore installation this summer. [Pg.1057]

Fig. III-9. Representative plots of surface tension versus composition, (a) Isooctane-n-dodecane at 30°C 1 linear, 2 ideal, with a = 48.6. Isooctane-benzene at 30°C 3 ideal, with a = 35.4, 4 ideal-like with empirical a of 112, 5 unsymmetrical, with ai = 136 and U2 = 45. Isooctane- Fig. III-9. Representative plots of surface tension versus composition, (a) Isooctane-n-dodecane at 30°C 1 linear, 2 ideal, with a = 48.6. Isooctane-benzene at 30°C 3 ideal, with a = 35.4, 4 ideal-like with empirical a of 112, 5 unsymmetrical, with ai = 136 and U2 = 45. Isooctane-<yclohexane at 30°C 6 ideal, with a = 38.4, 7 ideallike with empirical a of 109.3, (a values in A /molecule) (from Ref. 93). (b) Surface tension isotherms at 350°C for the systems (Na-Rb) NO3 and (Na-Cs) NO3. Dotted lines show the fit to Eq. ni-55 (from Ref. 83). (c) Water-ethanol at 25°C. (d) Aqueous sodium chloride at 20°C. (e) Interfacial tensions between oil and water in the presence of sodium dodecylchloride (SDS) in the presence of hexanol and 0.20 M sodium chloride. Increasing both the surfactant and the alcohol concentration decreases the interfacial tension (from Ref. 92).
In addition to lowering the interfacial tension between a soil and water, a surfactant can play an equally important role by partitioning into the oily phase carrying water with it [232]. This reverse solubilization process aids hydrody-namically controlled removal mechanisms. The partitioning of surface-active agents between oil and water has been the subject of fundamental studies by Grieser and co-workers [197, 233]. [Pg.485]

It is quite clear, first of all, that since emulsions present a large interfacial area, any reduction in interfacial tension must reduce the driving force toward coalescence and should promote stability. We have here, then, a simple thermodynamic basis for the role of emulsifying agents. Harkins [17] mentions, as an example, the case of the system paraffin oil-water. With pure liquids, the inter-facial tension was 41 dyn/cm, and this was reduced to 31 dyn/cm on making the aqueous phase 0.00 IM in oleic acid, under which conditions a reasonably stable emulsion could be formed. On neutralization by 0.001 M sodium hydroxide, the interfacial tension fell to 7.2 dyn/cm, and if also made O.OOIM in sodium chloride, it became less than 0.01 dyn/cm. With olive oil in place of the paraffin oil, the final interfacial tension was 0.002 dyn/cm. These last systems emulsified spontaneously—that is, on combining the oil and water phases, no agitation was needed for emulsification to occur. [Pg.504]

Most characteristics of amphiphilic systems are associated with the alteration of the interfacial stnicture by the amphiphile. Addition of amphiphiles might reduce the free-energy costs by a dramatic factor (up to 10 dyn cm in the oil/water/amphiphile mixture). Adding amphiphiles to a solution or a mixture often leads to the fomiation of a microenuilsion or spatially ordered phases. In many aspects these systems can be conceived as an assembly of internal interfaces. The interfaces might separate oil and water in a ternary mixture or they might be amphiphilic bilayers in... [Pg.2381]

Figure C2.3.10. Ternary phase diagram of surfactant, oil and water illustrating tire (regular) and (reverse) L2 microemulsion domains. Figure C2.3.10. Ternary phase diagram of surfactant, oil and water illustrating tire (regular) and (reverse) L2 microemulsion domains.
Solubility in Water A familiar physical property of alkanes is contained m the adage oil and water don t mix Alkanes—indeed all hydrocarbons—are virtually insoluble m water In order for a hydrocarbon to dissolve m water the framework of hydrogen bonds between water molecules would become more ordered m the region around each mole cule of the dissolved hydrocarbon This increase m order which corresponds to a decrease m entropy signals a process that can be favorable only if it is reasonably... [Pg.82]

The concept of microemulsions now holds a central role within the field of surfactant technology. Perhaps the most fundamental fact captured by the term is that, contrary to a popular saying, oil and water can mix. [Pg.147]

The term microemulsion was introduced by Schulman, who studied surfactant solutions as eady as 1943 (22). At that time it was widely accepted that "oil and water do not mix," and Schulman understood that an emulsion scatters light because it contains droplets whose diameters are large compared to the wavelength of light (see Emulsions). Thus, the term y /mJemulsion implies a system which (like an emulsion) contains droplets of oil or water, but in which the droplets are too small to scatter light. [Pg.147]

Fig. 6. Adsorption capacity of various dessicants vs years of service in dehydrating high pressure natural gas (39). a, Alumin a H-151, gas 27° C and 123 kPa, from oil and water separators b, siUca gel, gas 38° C and 145 kPa, from oil absorption plant c, sorbead, 136-kPa gas from absorption plant ... Fig. 6. Adsorption capacity of various dessicants vs years of service in dehydrating high pressure natural gas (39). a, Alumin a H-151, gas 27° C and 123 kPa, from oil and water separators b, siUca gel, gas 38° C and 145 kPa, from oil absorption plant c, sorbead, 136-kPa gas from absorption plant ...
Solutions of fluorosihcones impart oil and water repeUent finishes to nylon—cotton fabrics. One series of C-1 through C-9 perfluoroalkyl substituents with varying stmctures were attached to siHcon through amide or ether linkages. The fluorosihcones having perfluorinated straight-chain... [Pg.400]

In foods and pharmaceuticals, gum ghatti has been used in many appheations described for gum arabic, particularly as an emulsifier for oil and water emulsions (49). It has also been used as a waterproofing agent in Hquid explosives, and to stabilize paraffin wax emulsions. However, in the 1990s, gum... [Pg.434]

Emulsification involves the joining of two mutually insoluble materials, such as petroleum oil and water. The surfactant, which usually has a hydrophilic or water-soluble end and a hydrophobic or oil-soluble end, holds the oil and water together in much the same manner that a fastener holds two pieces of material. Often, the emulsion which forms is unstable, subsequently breaking up and releasing the oil from the water. Break-up is actually preferred, because the oil then floats to the surface, whereas the surfactant is free to emulsify more oil. [Pg.220]

A mixing valve in the form of a conventional globe valve is simple and economical. A typical service iavolves caustic washing of gas oil and water—oil mixing upstream of a desalter. The valve is normally specified to handle a pressure drop ia the range of 20—350 kPa (0.2—3.5 atm). [Pg.435]

Coconut. In 1988, total coconut production was 36,802,000 t, of which 81% was produced in Asia, mainly in Indonesia and the Philippines (157). The coconut is essentiaUy a crop of the lowland tropics (157). On the average, five nuts are required to produce 1 kg of copra, the dried endosperm of the nut. Copra is further processed to obtain coconut oil and copra meal. To produce coconut milk, which is an emulsion of coconut oil and water, grated fresh coconut meat is mixed with hot water and pressed (157). Either poles having an attached sickle-shaped knife or monkeys (158) may be used for harvesting. [Pg.280]


See other pages where Oils and Water is mentioned: [Pg.128]    [Pg.156]    [Pg.124]    [Pg.203]    [Pg.205]    [Pg.210]    [Pg.218]    [Pg.516]    [Pg.517]    [Pg.2377]    [Pg.2380]    [Pg.711]    [Pg.148]    [Pg.149]    [Pg.151]    [Pg.132]    [Pg.16]    [Pg.291]    [Pg.315]    [Pg.204]    [Pg.250]    [Pg.499]    [Pg.18]    [Pg.193]    [Pg.201]   


SEARCH



Oil-water

© 2024 chempedia.info