Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of cumene

Obtained synthetically by one of the following processes fusion of sodium ben-zenesulphonate with NaOH to give sodium phenate hydrolysis of chlorobenzene by dilute NaOH at 400 C and 300atm. to give sodium phenate (Dow process) catalytic vapour-phase reaction of steam and chlorobenzene at 500°C (Raschig process) direct oxidation of cumene (isopropylbenzene) to the hydroperoxide, followed by acid cleavage lo propanone and phenol catalytic liquid-phase oxidation of toluene to benzoic acid and then phenol. Where the phenate is formed, phenol is liberated by acidification. [Pg.303]

Because the protonation of ozone removes its dipolar nature, the electrophilic chemistry of HOs, a very efficient oxygenating electrophile, has no relevance to conventional ozone chemistry. The superacid-catalyzed reaction of isobutane with ozone giving acetone and methyl alcohol, the aliphatic equivalent of the industrially significant Hock-reaction of cumene, is illustrative. [Pg.166]

From cumene Almost all the phenol produced in the United States is prepared by this method Oxi dation of cumene takes place at the benzylic posi tion to give a hydroperoxide On treatment with dilute sulfuric acid this hydroperoxide is converted to phenol and acetone... [Pg.1000]

One of the mdustnal processes for the preparation of phenol discussed in Section 24 6 includes an acid catalyzed rearrangement of cumene hydroperoxide as a key step This reaction proceeds by way of an intermediate hemiacetal... [Pg.1023]

One kilogram of phenol production results ia about 0.6 kg of acetone or about 0.40—0.45 kg of acetone per kilogram of cumene used. [Pg.95]

There are many variations of the basic process and the patent Hterature is extensive. Several key patents describe the technology (16). The process steps are oxidation of cumene to a concentrated hydroperoxide, cleavage of the hydroperoxide, neutralization of the cleaved products, and distillation to recover acetone. [Pg.95]

This procedure may result in a concentration of cumene hydroperoxide of 9—12% in the first reactor, 15—20% in the second, 24—29% in the third, and 32—39% in the fourth. Yields of cumene hydroperoxide may be in the range of 90—95% (18). The total residence time in each reactor is likely to be in the range of 3—6 h. The product is then concentrated by evaporation to 75—85% cumene hydroperoxide. The hydroperoxide is cleaved under acid conditions with agitation in a vessel at 60—100°C. A large number of nonoxidising inorganic acids are usehil for this reaction, eg, sulfur dioxide (19). [Pg.96]

Propylation of benzene with propylene, catalyzed by supported phosphoric acid (or related catalysts such as AlCl ), gives cumene [98-82-8] in another important industrial process. Cumene (qv), through the intermediacy of cumene hydroperoxide, is used in the manufacture of phenol (qv). Resorcinol similarly can be made from y -diisopropylbenzene (6). [Pg.551]

An oxirane process utilizes ethylbenzene to make the hydroperoxide, which then is used to make propylene oxide [75-56-9]. The hydroperoxide-producing reaction is similar to the first step of cumene LPO except that it is slower (2,224,316—318). In the epoxidation step, a-phenylethyl alcohol [98-85-1] is the coproduct. It is dehydrated to styrene [100-42-5]. The reported 1992 capacity for styrene by this route was 0.59 X 10 t/yr (319). The corresponding propylene oxide capacity is ca 0.33 x 10 t/yr. The total propylene oxide capacity based on hydroperoxide oxidation of propylene [115-07-1] (coproducts are /-butyl alcohol and styrene) is 1.05 x 10 t/yr (225). [Pg.345]

Another mode of preparation includes the dismutation of cumene (qv) in DIPB and benzene in presence of an HZSM-12 catalyst at 200°C (6). The ratio p/m increases with the temperature. Finally, but with purification difficulties, DIPB can be coproduced with cumene (7). [Pg.488]

Sales demand for acetophenone is largely satisfied through distikative by-product recovery from residues produced in the Hock process for phenol (qv) manufacture. Acetophenone is produced in the Hock process by decomposition of cumene hydroperoxide. A more selective synthesis of acetophenone, by cleavage of cumene hydroperoxide over a cupric catalyst, has been patented (341). Acetophenone can also be produced by oxidizing the methylphenylcarbinol intermediate which is formed in styrene (qv) production processes using ethylbenzene oxidation, such as the ARCO and Halcon process and older technologies (342,343). [Pg.501]

Other Hydroperoxides. Several hydrotrioxides including alkyl hydrotrioxides, R—OOOH, have been reported (63,64). There is strong spectroscopic evidence that a-cumyl hydrotrioxide [82951-48-2] is produced in the low temperature ozonization of cumene. Homolytic decomposition of a-cumyl hydrotrioxide in cumene/acetone-hindered phenol resulted in cumyl alcohol as the only organic product (65). Based on the... [Pg.105]

P. G. Watanabe, D. G. Pegg, J. D. Burek, H. O. Yakel, and L. W. Rampy, M 90-Day Bepeated Inhalation Toxicity Study of Cumene Hydroperoxide in Bats, Toxicology Research Laboratory, EPA Document No. 868600016, Eiche No. OTS0510168, Dow Chemical USA, Midland, Mich., 1979. [Pg.139]

Cumene Process. There are several Hcensed processes to produce phenol which are based on cumene (qv) (1,8—11). AH of these processes consist of two fundamental chemical reactions cumene is oxidized with air to form cumene hydroperoxide, and cumene hydroperoxide is cleaved to yield phenol and acetone. In this process, approximately 0.46 kg of acetone and 0.75 kg of phenol are produced per kg of cumene feedstock. [Pg.288]

Oxidation of cumene to cumene hydroperoxide is usually achieved in three to four oxidizers in series, where the fractional conversion is about the same for each reactor. Fresh cumene and recycled cumene are fed to the first reactor. Air is bubbled in at the bottom of the reactor and leaves at the top of each reactor. The oxidizers are operated at low to moderate pressure. Due to the exothermic nature of the oxidation reaction, heat is generated and must be removed by external cooling. A portion of cumene reacts to form dimethylbenzyl alcohol and acetophenone. Methanol is formed in the acetophenone reaction and is further oxidized to formaldehyde and formic acid. A small amount of water is also formed by the various reactions. The selectivity of the oxidation reaction is a function of oxidation conditions temperature, conversion level, residence time, and oxygen partial pressure. Typical commercial yield of cumene hydroperoxide is about 95 mol % in the oxidizers. The reaction effluent is stripped off unreacted cumene which is then recycled as feedstock. Spent air from the oxidizers is treated to recover 99.99% of the cumene and other volatile organic compounds. [Pg.288]

Safety is a critical aspect in the design of phenol plants. Oxidation of cumene to CHP occurs at conditions close to the flammable limits. Furthermore, the CHP is a potentially unstable material which can violendy decompose under certain conditions. Thus, phenol plants must be carefully designed and provided with weU-designed control and safety systems. [Pg.289]

Another unique redox system used for extending gel times consists of cumene hydroperoxide and manganese naphthenate, which provides consistent gel times of between two and four hours over a temperature range of 25—50°C. [Pg.319]

SPA Catalyst. The sohd phosphoric acid (SPA) catalyst process has been the domiaant source of cumene siace the 1930s. This process accounts for more than 90% of cumene operating capacity (59). A simplified process flow diagram is given ia Figure 5. [Pg.50]

Propylene feed, fresh benzene feed, and recycle benzene are charged to the upflow reactor, which operates at 3—4 MPa (400—600 psig) and at 200—260°C. The SPA catalyst provides an essentially complete conversion of propylene [115-07-1] on a one-pass basis. A typical reactor effluent yield contains 94.8 wt % cumene and 3.1 wt % diisopropylbenzene [25321-09-9] (DIPB). The remaining 2.1% is primarily heavy aromatics. This high yield of cumene is achieved without transalkylation of DIPB and is unique to the SPA catalyst process. [Pg.50]

The cumene product is 99.9 wt % pure, and the heavy aromatics, which have a research octane number (RON) of 109, can either be used as high octane gasoline-blending components or combiaed with additional benzene and sent to a transalkylation section of the plant where DIPB is converted to cumene. The overall yields of cumene for this process are typically 97—98 wt % with transalkylation and 94—96 wt % without transalkylation. [Pg.50]

AlCl and Hydrogen Chloride Catalyst. Historically, AIQ processes have been used more extensively for the production of ethylbenzene than for the production of cumene. In 1976, Monsanto developed an improved cumene process that uses an AIQ. catalyst, and by the mid-1980s, the technology had been successfully commercialized. The overall yields of cumene for this process can be as high as 99 wt % based on benzene and 98 wt % based on propylene (60). [Pg.50]

Zeolite Catalysts. Uaocal has iatroduced a fixed-bed fiquid-phase reactor system based oa a Y-type zeofite catalyst (62). The selectivity to cumene is geaeraHy betweea 70 and 90 wt %. The remaining components are primarily polyisopropylbenzenes, which are transalkylated to cumene ia a separate reactioa zoae to give an overall yield of cumene of about 99 wt %. The distillation requirements iavolve the separation of propane for LPG use, the recycle of excess benzene to the reaction zones, the separation of polyisopropylbenzene for transalkylation to cumene, and the production of a purified cumene product. [Pg.50]

Catalysts. Nearly aU. of the industrially significant aromatic alkylation processes of the past have been carried out in the Hquid phase with unsupported acid catalysts. For example, AlCl HF have been used commercially for at least one of the benzene alkylation processes to produce ethylbenzene (104), cumene (105), and detergent alkylates (80). Exceptions to this historical trend have been the use of a supported boron trifluoride for the production of ethylbenzene and of a soHd phosphoric acid (SPA) catalyst for the production of cumene (59,106). [Pg.53]

Two catalysts have emerged as commercially viable. The Mobil—Badger ethylbenzene process, which has been in commercial use since 1980, employs a ZeoHte catalyst and operates in the gas phase. A Hquid-phase ethylbenzene process joindy Hcensed by Lummus and UOP uses a Y-type ZeoHte catalyst developed by Unocal. This Hquid-phase process was commercialized in 1990. The same Y-type ZeoHte catalyst used for the production of ethylbenzene is being offered for the production of cumene but has not yet been commercialized. [Pg.53]

Because of their initial commercial success and the industry s growing awareness of environmental issues, soHd acid catalysts are expected to ultimately replace Hquid acid catalysts. Several pubHcations describe the use of soHd acid catalysts for the production of cumene and detergent alkylates (62,85-87,109). [Pg.53]

Cumene. Cumene (qv) is produced by Friedel-Crafts alkylation of benzene by propylene (103,104). The main appHcation of cumene is the production of phenol (qv) and by-product acetone (qv). Minor amounts are used in gasoline blending (105). [Pg.130]

The oxidation step is similar to the oxidation of cumene to cumene hydroperoxide that was developed earlier and is widely used in the production of phenol and acetone. It is carried out with air bubbling through the Hquid reaction mixture in a series of reactors with decreasing temperatures from 150 to 130°C, approximately. The epoxidation of ethylbenzene hydroperoxide to a-phenylethanol and propylene oxide is the key development in the process. [Pg.484]

Benzoic Acid. Ben2oic acid is manufactured from toluene by oxidation in the liquid phase using air and a cobalt catalyst. Typical conditions are 308—790 kPa (30—100 psi) and 130—160°C. The cmde product is purified by distillation, crystallization, or both. Yields are generally >90 mol%, and product purity is generally >99%. Kalama Chemical Company, the largest producer, converts about half of its production to phenol, but most producers consider the most economic process for phenol to be peroxidation of cumene. Other uses of benzoic acid are for the manufacture of benzoyl chloride, of plasticizers such as butyl benzoate, and of sodium benzoate for use in preservatives. In Italy, Snia Viscosa uses benzoic acid as raw material for the production of caprolactam, and subsequendy nylon-6, by the sequence shown below. [Pg.191]

Some physical, chemical, and thermodynamic properties of cumene ate Hsted in Tables 1 and 2 (2—6). Useful health and safety data have been included. [Pg.362]

The transport and other properties of cumene and other compounds in the series have been given in graphical form (6). [Pg.362]

Cumene as a pure chemical intermediate is produced in modified Friedel-Crafts reaction processes that use acidic catalysts to alkylate benzene with propylene (see Alkylation Friedel-CRAFTSreactions). The majority of cumene is manufactured with a soHd phosphoric acid catalyst (7). The remainder is made with aluminum chloride catalyst (8). [Pg.363]

From 1980 through 1987, the market price fluctuated between 395 and 595 per metric ton, ending up at 550 per ton in 1987 (1,10). Since the beginning of 1990, the U.S. contract price for bulk quantities of cumene has shown a general downward trend. A compilation of prices from then until the end of April 1992 shows prices starting the period at 520 per metric ton. For a brief period from late 1990 to early 1991, the price rose to levels around 550 per ton, but from then until April 1992, the price decreased to a steady value of 425 per ton (11). [Pg.363]

Table 3. Cost of Cumene Production per Metric Ton Cumene... Table 3. Cost of Cumene Production per Metric Ton Cumene...
Cumene is expected to exist almost entirely in the vapor phase in the atmosphere (13). In water, mixed cultures of microorganisms collected from various locations and depths in the Atiantic Ocean were all found to be capable of degrading cumene (14). A number of studies have examined the aerobic degradation of cumene in seawater and in groundwater (15,16). The results indicate that cumene would normally be naturally degraded to below detectable limits within a week to ten days. Cumene is tightly adsorbed by soil and is not significantly mobile in soil (17). [Pg.364]

A relatively small number of studies have reported on the effects of cumene on plants, fish, and other organisms. Studies of the effects of cumene on fresh and saltwater fish indicate the lowest reported toxic concentration (LC q) for fishes was 20 to 30 mg/L (18). The solubiUty of cumene is about 50 mg/L (19). Among invertebrates, the lowest reported concentration that was toxic to test organisms was 0.012 mg/L after 18 hours (20). The only available data on the effect of cumene on aquatic plants indicate that the photosynthesis of several species was inhibited at concentrations from 9 to 21 mg/L (19). [Pg.364]

More than 95% of the cumene produced is used as feedstock for the production of phenol (qv) and its coproduct acetone (qv). The cumene oxidation process for phenol synthesis has been growing in popularity since the 1960s and is prominent today. The first step of this process is the formation of cumene hydroperoxide [80-15-9]. The hydroperoxide is then selectively cleaved to phenol [108-95-2] and acetone [67-64-1/ in an acidic environment (21). [Pg.364]

The acetone supply is strongly influenced by the production of phenol, and so the small difference between total demand and the acetone suppHed by the cumene oxidation process is made up from other sources. The largest use for acetone is in solvents although increasing amounts ate used to make bisphenol A [80-05-7] and methyl methacrylate [80-62-6]. a-Methylstyrene [98-83-9] is produced in controlled quantities from the cleavage of cumene hydroperoxide, or it can be made directly by the dehydrogenation of cumene. About 2% of the cumene produced in 1987 went to a-methylstyrene manufacture for use in poly (a-methylstyrene) and as an ingredient that imparts heat-resistant quaUties to polystyrene plastics. [Pg.364]

This procedure has also been used successfully in the acetylation of cumene and fert.-butyl benzene. At the low temperatures employed there is very little decomposition, as is shown by the small amount of high-boiling residue. [Pg.3]

Catalytic dehydrogenation of cumene, obtained by alkylation of benzene with propylene, will give a-methylstyrene (Figure 16.15). [Pg.453]


See other pages where Of cumene is mentioned: [Pg.329]    [Pg.330]    [Pg.506]    [Pg.50]    [Pg.112]    [Pg.481]    [Pg.362]    [Pg.362]    [Pg.364]    [Pg.1321]   
See also in sourсe #XX -- [ Pg.3 , Pg.14 ]

See also in sourсe #XX -- [ Pg.3 , Pg.14 ]

See also in sourсe #XX -- [ Pg.3 , Pg.14 ]

See also in sourсe #XX -- [ Pg.3 , Pg.14 ]

See also in sourсe #XX -- [ Pg.3 , Pg.14 ]




SEARCH



Acetylation of cumene

Adsorption of cumene

Alkylation of Benzene by Propylene to Cumene

Cracking of cumene

Cumene

Cumenes

Dealkylation of cumene

Decay reactions of organic anion radicals in vitreous cumene

Inhibition of cumene cracking on silica-alumina

Is the Adsorption of Cumene Rate-Limiting

Kinetics of cumene cracking

Monohalogen derivs of cumene

Oxidation of Cumene

Oxidations of cumenes

Summary of the Cumene Decomposition

Synthesis of Cumene

© 2024 chempedia.info