Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Number of Samples

The spectroscopic methods, NMR and mass spectrometry for predicting cetane numbers have been established from correlations of a large number of samples. The NMR of carbon 13 or proton (see Chapter 3) can be employed. In terms of ease of operation, analysis time (15 minutes), accuracy of prediction (1.4 points average deviation from the measured number), it is... [Pg.220]

Permeabilities measured on small core samples, whilst accurate, are not necessarily representative of the reservoir. Averaging a number of samples can allow comparisons with well test permeabilities to be made. [Pg.151]

The contact fatigue creates independent part of the fatigue tests. As consequence of triaxial state of stress and flexible plastic state in contact area occurrence comes to very considerable scattering of experimental data. From this reason it is necessary to test statistic meaningful number of samples. [Pg.61]

Specimens used in tests were sections of cables with PVC outer coating. PVC was plasticized with DOF softener. The materials considered were exposed to the radiation and thermal aging. The samples have been irradiated at room temperature by hard gamma rays with 10 rad/sec dose power. A number of samples had been heated for long different times at 90°C. Besides a special specimens were cut out from outer coating for test on tensile machine like "Instron". The total doses of irradiation, times of heating and elongations at break obtained with "Instron" are listed in Table 1. [Pg.244]

Analogous intei-polation procedures involving higher numbers of sampling points than the two ends used in the above example provide higher-order approximations for unknown functions over one-dimensiona elements. The method can also be extended to two- and three-dimensional elements. In general, an interpolated function over a multi-dimensional element Q is expressed as... [Pg.21]

The abbreviated table on the next page, which gives critical values of z for both one-tailed and two-tailed tests at various levels of significance, will be found useful for purposes of reference. Critical values of z for other levels of significance are found by the use of Table 2.26b. For a small number of samples we replace z, obtained from above or from Table 2.26b, by t from Table 2.27, and we replace cr by ... [Pg.200]

Designing an experimental procedure involves selecting an appropriate method of analysis based on established criteria, such as accuracy, precision, sensitivity, and detection limit the urgency with which results are needed the cost of a single analysis the number of samples to be analyzed and the amount of sample available for... [Pg.5]

The time needed to complete an analysis for a single sample is often fairly similar from method to method. This is somewhat misleading, however, because much of this time is spent preparing the solutions and equipment needed for the analysis. Once the solutions and equipment are in place, the number of samples that can be analyzed per hour differs substantially from method to method. This is a significant factor in selecting a method for laboratories that handle a high volume of samples. [Pg.44]

The cost of an analysis is determined by many factors, including the cost of necessary equipment and reagents, the cost of hiring analysts, and the number of samples that can be processed per hour. In general, methods relying on instruments cost more per sample than other methods. [Pg.44]

The detection of outliers, particularly when working with a small number of samples, is discussed in the following papers. Efstathiou, G. Stochastic Galculation of Gritical Q-Test Values for the Detection of Outliers in Measurements, /. Chem. Educ. 1992, 69, 773-736. [Pg.102]

A randomly collected sample makes no assumptions about the target population, making it the least biased approach to sampling. On the other hand, random sampling requires more time and expense than other sampling methods since a greater number of samples are needed to characterize the target population. [Pg.184]

In the previous section we considered the amount of sample needed to minimize the sampling variance. Another important consideration is the number of samples required to achieve a desired maximum sampling error. If samples drawn from the target population are normally distributed, then the following equation describes the confidence interval for the sampling error... [Pg.191]

Equation 7.7 only provides an estimate for the smallest number of samples expected to produce the desired sampling error. The actual sampling error may be substantially higher if the standard deviation for the samples that are collected is signihcantly greater than the standard deviation due to sampling used to calculate n. ... [Pg.191]

This is not an uncommon problem. For a target population with a relative sampling variance of 50 and a desired relative sampling error of 5%, equation 7.7 predicts that ten samples are sufficient. In a simulation in which 1000 samples of size 10 were collected, however, only 57% of the samples resulted in sampling errors of less than 5% By increasing the number of samples to 17 it was possible to ensure that the desired sampling error was achieved 95% of the time. [Pg.192]

An analysis requires a sample, and how we acquire the sample is critical. To be useful, the samples we collect must accurately represent their target population. Just as important, our sampling plan must provide a sufficient number of samples of appropriate size so that the variance due to sampling does not limit the precision of our analysis. [Pg.224]

Time, Cost, and Equipment Precipitation gravimetric procedures are time-intensive and rarely practical when analyzing a large number of samples. liowever, since much of the time invested in precipitation gravimetry does not require an analyst s immediate supervision, it may be a practical alternative when working with only a few samples. Equipment needs are few (beakers, filtering devices, ovens or burners, and balances), inexpensive, routinely available in most laboratories, and easy to maintain. [Pg.255]

Flow injection analysis (FIA) was developed in the mid-1970s as a highly efficient technique for the automated analyses of samples. °> Unlike the centrifugal analyzer described earlier in this chapter, in which samples are simultaneously analyzed in batches of limited size, FIA allows for the rapid, sequential analysis of an unlimited number of samples. FIA is one member of a class of techniques called continuous-flow analyzers, in which samples are introduced sequentially at regular intervals into a liquid carrier stream that transports the samples to the detector. ... [Pg.649]

For each type of problem, appropriate taste tests are suggested together with the type of panel, number of samples per test, and analysis of data. [Pg.19]

How Many Samples. A first step in deciding how many samples to collect is to divide what constitutes an overexposure by how much or how often an exposure can go over the exposure criteria limit before it is considered important. Given this quantification of importance it is then possible to calculate, using an assumed variabihty, how many samples are required to demonstrate just the significance of an important difference if one exists (5). This is the minimum number of samples required for each hypothesis test, but more samples are usually collected. In the usual tolerance limit type of testing where the criteria is not more than some fraction of predicted exceedances at some confidence level, increasing the number of samples does not increase confidence as much as in tests of means. Thus it works out that the incremental benefit above about seven samples is small. [Pg.107]

Sample and status tracking Database searches Numbers of samples assayed Tests utilised... [Pg.517]

Because of the large number of samples and repetitive nature of environmental analysis, automation is very important. Autosamplers are used for sample injection with gc and Ic systems, and data analysis is often handled automatically by user-defined macros in the data system. The high demand for the analysis of environmental samples has led to the estabUshment of contract laboratories which are supported purely by profits from the analysis. On-site monitoring of pollutants is also possible using small quadmpole ms systems fitted into mobile laboratories. [Pg.548]

In the following discussion of chemical constituents, unless reported as approximate, the percentages given are representative rather than absolute, since they are based on the analysis of a limited number of samples. AH results are reported on a moisture-free basis. [Pg.270]

Important to environmental analysis is the ability to automate the injection, as weU as the identification and quantitation of large numbers of samples. Gc/ms systems having automatic injectors and computerized controllers have this capabiUty, even producing a final report in an unattended manner. Confirmation and quantitation are accompHshed by extracting a specific ion for each of the target compounds. Further confirmation can be obtained by examining the full scan mass spectmm. [Pg.402]

The quantity of sample required comprises two parts the volume and the statistical sample size. The sample volume is selected to permit completion of all required analytical procedures. The sample size is the necessary number of samples taken from a stream to characterize the lot. Sound statistical practices are not always feasible either physically or economically in industry because of cost or accessibiUty. In most sampling procedures, samples are taken at different levels and locations to form a composite sample. If some prior estimate of the population mean, and population standard deviation. O, are known or may be estimated, then the difference between that mean and the mean, x, in a sample of n items is given by the following ... [Pg.298]

Eig. 1. Eormat of the data matrix, where Ai is the number of samples and iC is the number of variables. [Pg.417]

The successful appHcation of pattern recognition methods depends on a number of assumptions (14). Obviously, there must be multiple samples from a system with multiple measurements consistendy made on each sample. For many techniques the system should be overdeterrnined the ratio of number of samples to number of measurements should be at least three. These techniques assume that the nearness of points in hyperspace faithfully redects the similarity of the properties of the samples. The data should be arranged in a data matrix with one row per sample, and the entries of each row should be the measurements made on the sample, as shown in Figure 1. The information needed to answer the questions must be implicitly contained in that data matrix, and the data representation must be conformable with the pattern recognition algorithms used. [Pg.419]


See other pages where Number of Samples is mentioned: [Pg.207]    [Pg.218]    [Pg.44]    [Pg.657]    [Pg.180]    [Pg.184]    [Pg.190]    [Pg.191]    [Pg.192]    [Pg.224]    [Pg.227]    [Pg.636]    [Pg.694]    [Pg.276]    [Pg.284]    [Pg.38]    [Pg.107]    [Pg.517]    [Pg.518]    [Pg.298]    [Pg.299]    [Pg.202]    [Pg.232]    [Pg.393]    [Pg.426]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Number of Individual Samples Required

Number of Primary Samples

Number of samples in the calibration set

Number of samples required

Number of samples studied

Sample calculations of ionic transference numbers

Sample number

Sampling number of samples

Sampling number of samples

© 2024 chempedia.info