Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleotides deamination

Anant, S. and Davidson, N.O. (2003) Hydrolytic nucleoside and nucleotide deamination, and genetic instability a possible link between RNA-editing enzymes and cancer Trends Mol. Med., 9,147-152. [Pg.43]

Deamination of Nucleotides Deamination of nucleotides occurs in many tissues. A number of nucleotide deaminases have been characterized ... [Pg.278]

Ammonia (NHj) is found in foods mainly as a product of free nucleotide deamination, such as deamination of adenosine 5 -monophosphate (AMP) to inosine 5 -monophosphate, and as a product of deamination of the amino acid amides asparagine and glutamine. In acidic foods, ammonia is present almost exclusively in the form of ammonium salts. [Pg.593]

The bearing which these discoveries have had on the elucidation of the structure of ribopolynucleotides will be discussed later. It is important to stress here, however, that, for most purposes, the older methods of preparing nucleotides have been superseded by procedures which yield separate isomers of each. Of the techniques mentioned above, paper chromatography iB mainly of analytical value, and is the most convenient method for the qualitative detection of isomeric adenylic acids. The only disadvantage of this method is that the isomers are not completely separable from muscle adenylic acid. The presence of the latter, however, can be readily detected by hydrolyzing it to adenosine by means of the specific 5-nucleotidase present in snake venoms,66 or by deamination by a specific enzyme... [Pg.295]

The isomerism existing between the pairs of nucleotides was attributed to the different locations of the phosphoryl residues in the carbohydrate part of the parent nucleoside,49 63 since, for instance, the isomeric adenylic acids are both hydrolyzed by acids to adenine, and by alkalis or kidney phosphatase to adenosine. Neither is identical with adenosine 5-phosphate since they are not deaminated by adenylic-acid deaminase,68 60 and are both more labile to acids than is muscle adenylic acid. An alternative explanation of the isomerism was put forward by Doherty.61 He was able, by a process of transglycosidation, to convert adenylic acids a" and 6 to benzyl D-riboside phosphates which were then hydrogenated to optically inactive ribitol phosphates. He concluded from this that both isomers are 3-phosphates and that the isomerism is due to different configurations at the anomeric position. This evidence is, however, open to the same criticism detailed above in connection with the work of Levene and coworkers. Further work has amply justified the original conclusion regarding the nature of the isomerism, since it has been found that, in all four cases, a and 6 isomers give rise to the same nucleoside on enzymic hydrolysis.62 62 63 It was therefore evident that the isomeric nucleotides are 2- and 3-phosphates, since they are demonstrably different from the known 5-phosphates. The decision as to which of the pair is the 2- and which the 3-phosphate proved to be a difficult one. The problem is complicated by the fact that the a and b" nucleotides are readily interconvertible.64,64... [Pg.296]

Deficiency of the muscle-specific myoadenylate deaminase (MADA) is a frequent cause of exercise-related myopathy and is thought to be the most common cause of metabolic myopathy. MADA catalyzes the deamination of AMP to IMP in skeletal muscle and is critical in the purine nucleotide cycle. It is estimated that about 1-2% of all muscle biopsies submitted to medical centers for pathologic examination are deficient in AMP deaminase enzyme activity. MADA is 10 times higher in skeletal muscle than in any other tissue. Increase in plasma ammonia (relative to lactate) after ischemic exercise of the forearm may be low in this disorder, which is a useful clinical diagnostic test in patients with exercise-induced myalgia... [Pg.307]

Answer C. The child most likely has severe combined immunodeficiency caused by adenosine deaminase defidency. This enzyme deaminates adenosine (a nudeoside) to form inosine (another nucleoside). Hypoxanthine and xanthine are both purine bases, and the monophosphates are nucleotides. [Pg.274]

Purine (left). The purine nucleotide guano-sine monophosphate (CMP, 1) is degraded in two steps—first to the guanosine and then to guanine (Gua). Guanine is converted by deamination into another purine base, xanthine. [Pg.186]

In the most important degradative pathway for adenosine monophosphate (AMP), it is the nucleotide that deaminated, and inosine monophosphate (IMP) arises. In the same way as in GMP, the purine base hypoxanthine is released from IMP. A single enzyme, xanthine oxidase [3], then both converts hypoxanthine into xanthine and xanthine into uric acid. An 0X0 group is introduced into the substrate in each of these reaction steps. The oxo group is derived from molecular oxygen another reaction product is hydrogen peroxide (H2O2), which is toxic and has to be removed by peroxidases. [Pg.186]

This massive amount of information should not be considered as insurmountable or only material to be marveled at but not understood. Much of the chemistry is already available to mine this information successfully. Much of it is understandable in somewhat simple terms, generally only after we have discovered the key to this simplicity. For instance, there is a marked decrease in the frequency of the dinucleotide CpG in some areas of the genome. The deficiency is believed to be due to the fact that most CpG nucleotides are methylated on the cytosine base, and spontaneous deamination of the methyl-cytosine residue creates T residues. Thus, CpG dinucleotide sequences mutate to TpG dinucleotides. But there still remain some questions. There are certain regions or islands where the CpG sequences exist in a nonmethylated form and where the frequency of CpG occurs within the expected or normal rate. Why These CpG islands are of particular interest because they are associated with the 5 ends of genes. [Pg.340]

In Fig. 1 various targets of some important cytostatic agents are depicted. Their main mechanisms of action can be briefly summarized as follows. Pentostatin blocks purine nucleotides by inhibiting adenosine deaminase. 6-Mercaptopurine and 6-thioguanine inhibit purine ring biosynthesis and they inhibit nucleotide interconversions. Methotrexate by inhibiting dihydrofolate reduction blocks thymidine monophosphate and purine synthesis. 5-Fluorouracil also blocks thymidine monophosphate synthesis. Dactinomycin, daunorubicin, doxorubicin and mitoxantrone intercalate with DNA and inhibit RNA synthesis. L-asparaginase deaminates... [Pg.448]

Several nucleotide bases undergo spontaneous loss of their exocyclic amino groups (deamination) (Fig. 8-33a). For example, under typical cellular conditions, deamination of cytosine (in DNA) to uracil occurs in about one of every 107 cytidine residues in 24 hours. This corresponds to about 100 spontaneous events per day, on average, in a mammalian cell. Deamination of adenine and guanine occurs at about l/100th this rate. [Pg.293]

RGURE 8-33 Some well-characterized nonenzymatic reactions of nucleotides (a) Deamination reactions Only the base is shown, (b) Depurination, in which a purine is lost by hydrolya s of the N-fS-glycosyl bond. The deoxyribose remaining after depurination is readily converted from the /3-furanose to the aldehyde form (see Rg. 8-3). Further nonenzymatic reactions are illustrated in figures 8-34 and 8-35. [Pg.294]

Purine nucleotides are degraded by a pathway in which they lose their phosphate through the action of 5 -nucleotidase (Fig. 22-45). Adenylate yields adenosine, which is deaminated to inosine by adenosine deaminase, and inosine is hydrolyzed to hypoxanthine (its purine base) and D-ribose. Hypoxanthine is oxidized successively to xanthine and then uric acid by xanthine oxidase, a flavoenzyme with an atom of molybdenum and four iron-sulfur centers in its prosthetic group. Molecular oxygen is the electron acceptor in this complex reaction. [Pg.873]

Aromatic compounds arise in several ways. The major mute utilized by autotrophic organisms for synthesis of the aromatic amino acids, quinones, and tocopherols is the shikimate pathway. As outlined here, it starts with the glycolysis intermediate phosphoenolpyruvate (PEP) and erythrose 4-phosphate, a metabolite from the pentose phosphate pathway. Phenylalanine, tyrosine, and tryptophan are not only used for protein synthesis but are converted into a broad range of hormones, chromophores, alkaloids, and structural materials. In plants phenylalanine is deaminated to cinnamate which yields hundreds of secondary products. In another pathway ribose 5-phosphate is converted to pyrimidine and purine nucleotides and also to flavins, folates, molybdopterin, and many other pterin derivatives. [Pg.1420]

Phosphorylation of dCDP to dCTP (step k, Fig. 25-14) completes the biosynthesis of the first of the pyrimidine precursors of DNA. The uridine nucleotides arise in two ways. Reduction of UDP yields dUDP (step), Fig. 25-14). However, the deoxycytidine nucleotides are more often hydrolytically deaminated (reactions / and / ) 274 Methylation of dUMP to form thymidylate, dTMP (step n, Fig. 25-14), is catalyzed by thymidylate synthase. The reaction involves transfer of a 1-carbon unit from methylene tetrahydrofolic acid with subsequent reduction using THF as the electron donor. A probable mechanism is shown in Fig. 15-21. See also Box 15-E. Some bacterial transfer RNAs contain 4-thiouridine (Fig. 5-33). The sulfur atom is introduced by a sulfurtransferase (the Thil gene product in E. coli). The same protein is essential for thiamin biosynthesis (Fig. 25-21)274a... [Pg.1452]

Several of the B vitamins function as coenzymes or as precursors of coenzymes some of these have been mentioned previously. Nicotinamide adenine dinucleotide (NAD) which, in conjunction with the enzyme alcohol dehydrogenase, oxidizes ethanol to ethanal (Section 15-6C), also is the oxidant in the citric acid cycle (Section 20-10B). The precursor to NAD is the B vitamin, niacin or nicotinic acid (Section 23-2). Riboflavin (vitamin B2) is a precursor of flavin adenine nucleotide FAD, a coenzyme in redox processes rather like NAD (Section 15-6C). Another example of a coenzyme is pyri-doxal (vitamin B6), mentioned in connection with the deamination and decarboxylation of amino acids (Section 25-5C). Yet another is coenzyme A (CoASH), which is essential for metabolism and biosynthesis (Sections 18-8F, 20-10B, and 30-5A). [Pg.1267]

A detailed discussion of the mechanism for 5 -AMP deamination is at present premature. The sigmoid relationship for substrate saturation and activation by monovalent cations and adenine nucleotides is consistent with mechanisms involving active site-effector site interaction. However, the activation brought about by this site-site interaction is a relatively... [Pg.70]

The phosphodiester bonds of xanthylic acid in deaminated RNA were scarcely split by RNase U2 (30). The susceptibility of purine nucleotide residues to RNase U2 decreases in the order of A>G>I X, indicating that the phosphodiester bonds of adenylic acid and inosinic acid without a keto group at the position of purine base are more sensitive to RNase U2 than those of guanylic acid and xanthylic acid. The resistance of TNP-RNA to RNase U2 may be also attributed to the steric hindrance by a larger substituent at 2-amino groups of guanylyl residues, as with RNase T, (SO). [Pg.237]

Deaminases present in many cells are able to deaminate cytosine or its nucleosides or nucleotides to the corresponding uracil derivatives. Cytosine aminohydrolase (deaminase) appears to occur only in microorganisms (yeast and bacteria), but cytidine aminohydrolase is widely distributed in bacteria, plants, and mammalian tissues. A distinct deox-... [Pg.555]

The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, animation, deamination, and oxido-reduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature. [Pg.58]


See other pages where Nucleotides deamination is mentioned: [Pg.216]    [Pg.216]    [Pg.217]    [Pg.123]    [Pg.103]    [Pg.345]    [Pg.255]    [Pg.356]    [Pg.101]    [Pg.294]    [Pg.306]    [Pg.306]    [Pg.110]    [Pg.90]    [Pg.313]    [Pg.452]    [Pg.372]    [Pg.153]    [Pg.880]    [Pg.103]    [Pg.92]    [Pg.1581]    [Pg.180]    [Pg.72]    [Pg.236]    [Pg.428]    [Pg.29]    [Pg.308]   
See also in sourсe #XX -- [ Pg.22 , Pg.376 ]

See also in sourсe #XX -- [ Pg.376 ]

See also in sourсe #XX -- [ Pg.277 ]

See also in sourсe #XX -- [ Pg.465 ]




SEARCH



Nucleotide, adenine deamination

Purine nucleotide catabolism deamination

© 2024 chempedia.info