Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic ionic liquids

The alkylation process possesses the advantages that (a) a wide range of cheap haloalkanes are available, and (b) the substitution reactions generally occur smoothly at reasonable temperatures. Furthermore, the halide salts formed can easily be converted into salts with other anions. Although this section will concentrate on the reactions between simple haloalkanes and the amine, more complex side chains may be added, as discussed later in this chapter. The quaternization of amines and phosphines with haloalkanes has been loiown for many years, but the development of ionic liquids has resulted in several recent developments in the experimental techniques used for the reaction. In general, the reaction may be carried out with chloroalkanes, bromoalkanes, and iodoalkanes, with the reaction conditions required becoming steadily more gentle in the order Cl Br I, as expected for nucleophilic substitution reactions. Fluoride salts cannot be formed in this manner. [Pg.9]

A quantitative study of the nucleophilic displacement reaction of benzoyl chloride with cyanide ion in [BMIM][PFg] was investigated by Eckert and co-workers [52]. The separation of the product, 1-phenylacetonitrile, from the ionic liquid was achieved by distillation or by extraction with supercritical CO2. The 1-phenylacetonitrile was then treated with KOH in [BMIM][PF6] to generate an anion, which reacted with 1,4-dibromobutane to give 1-cyano-l-phenylcyclopentane (Scheme 5.1-23). This was in turn extracted from the ionic liquid with supercritical CO2. These... [Pg.185]

As a demonstration of the complete synthesis of a pharmaceutical in an ionic liquid, Pravadoline was selected, as the synthesis combines a Friedel-Crafts reaction and a nucleophilic displacement reaction (Scheme 5.1-24) [53]. The allcylation of 2-methylindole with l-(N-morpholino)-2-chloroethane occurs readily in [BMIM][PF6] and [BMMIM][PF6] (BMMIM = l-butyl-2,3-dimethylimida2olium), in 95-99 % yields, with potassium hydroxide as the base. The Friedel-Crafts acylation step in [BMIM][PF6] at 150 °C occurs in 95 % yield and requires no catalyst. [Pg.186]

Obviously, the ionic liquid s ability to dissolve the ionic catalyst complex, in combination with low solvent nucleophilicity, opens up the possibility for biphasic processing. Furthermore it was found that the biphasic reaction mode in this specific reaction resulted in improved catalytic activity and selectivity and in enhanced catalyst lifetime. [Pg.250]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

At first, the reaction was investigated in batch mode, by use of different ionic liquids with wealdy coordinating anions as the catalyst medium and compressed CO2 as simultaneous extraction solvent. These experiments revealed that the activation of Wilke s catalyst by the ionic liquid medium was clearly highly dependent on the nature of the ionic liquid s anion. Comparison of the results in different ionic liquids with [EMIM] as the common cation showed that the catalyst s activity drops in the order [BARF] > [Al OC(CF3)2Ph 4] > [(CF3S02)2N] > [BFJ . This trend is consistent with the estimated nucleophilicity/coordination strength of the anions. [Pg.285]

The fact that ionic liquids with weakly coordinating anions can combine, in a unique manner, relatively high polarity with low nucleophilicity allows biphasic catalysis with highly electrophilic, cationic Ni-complexes to be carried out for the first time [26]. [Pg.354]

However, if we consider the alternative nucleophilic displacement, it is known that nucleophilic processes are accelerated by ionic liquids, but more pertinent is the fact that the Sn2 displacement of iodide from alkyl iodide (Mel) by Rh(CO)2l2 is slightly accelerated by ionic liquids (7). Unfortunately, ionic liquids would also be expected to accelerate the nucleophilic displacement of iodide from ethyl iodide by propionic acid to form ethyl propionate (Reaction 8). In fact, as an Sn2 Type II displacement (the interaction of two neutral species), the ester formation from propionic acid and ethyl iodide would be expected to be significantly increased compared to the reaction of Rh(CO)2l2 with EtI. Therefore, by operating in iodide containing ionic liquids, we had set up a situation in which we suppressed the normally predominant hydride mechanism, slightly accelerated the alternative nucleophilic mechanism, but dramatically increased the ethyl propionate by-product forming pathway. [Pg.333]

Some theoretical aspects of thiophene reactivity and structure have also been discussed, for example the kinetics of proton transfer from 2,3-dihydrobenzo[6]thiophenc-2-onc <06JOC8203>, the configuration of imines derived from thiophenecarbaldehydes <06JOC7165>, and the relative stability of benzo[c]thiophene <06T12204>. The kinetics of nucleophilic aromatic substitution of some 2-substituted-5-nitrothiophenes in room temperature ionic liquids have also been investigated <06JOC5144>. [Pg.121]

However, unlike most conventional solvents, many ionic liquids combine high solvating power for polar catalyst complexes (polarity) with weak coordination (nucleophilicity) [38], It is this combination that enables a biphasic reaction mode with these ionic liquids even for catalyst systems which are deactivated by water or polar organic solvents. [Pg.189]

The nature of the solvent also determines the chemoselective outcome in the reaction products. Products arising from the incorporation of one solvent molecule are formed (besides dibromides) in alcohols, acetic acid and acetonitrile (Id-e), whereas dibromo derivatives are formed exclusively in chlorinated solvents, nitromethane and in ionic liquids. (9) Chemoselectivity depends on the relative nucleophilicity of the solvent and the counterion, although it is affected also by other phenomena (ion pairing, and ion dissociation) in methanol the addition process gives quasi-exclusively bromo-methoxy adducts, whereas in acetic acid dibromides are the main products, formed in addition to smaller amounts of the bromo-acetoxy derivatives. (70)... [Pg.392]

Once the two salts are mixed in solution (acetone is a common solvent for this), the sodium chloride precipitates and is removed by filtration. The solvent is then removed under reduced pressure and, since salts have no vapour pressure, the ionic liquid remains in the flask. The problem with this reaction is that it is almost impossible to remove the last traces of chloride ions. The chloride not only influences the physical properties of the liquid such as melting point and viscosity, but is also a good nucleophile and can deactivate catalysts and affect reproducibility. A great deal of effort has been directed towards removal of the chloride contamination, including washes and chromatography, but none have proved to be completely effective [9], This has led to the development of some alternative synthetic routes. Simply exchanging Na[BF4]... [Pg.79]

Alkylimidazolinm tetraflnoroborates are, for example, ionic liquids at room-temperature that can provide an anion to stabilize an intermediate cation-radical with no possibility of nucleophilic attack on it. Ionic liquids have a huge memory effect, and their total friction is greater than that of conventional polar solvents. Thus, the total friction of l-ethyl-3-methylimidazolium hexafluoro-phosphate is about 50 times greater than that of AN (Shim et al. 2007). The solvent effects of ionic liquids on ion-radical ring closures deserve a special investigation. The ring closure reactions can be, in principal, controlled by solvent effects. [Pg.363]

Jorapur,Y. R. Chi, D. Y. (2006) Ionic liquids An environmentally friendly media for nucleophilic substitution reactions., Bull. Chem. Soc., 27 345-354. [Pg.340]

Ionic liquids also showed a catalytic activity for the cyclocondensation of a-tosyloxyketones with 2-aminopyridine [210], the nucleophilic substitution... [Pg.386]

The presence of PPh3 reduced the TOF from about 1400 to about 210 h which is of the same order of magnitude as that obtained under homogeneous conditions (207). The weak nucleophilic nature of the ionic liquid was again found to be essential, as it does not compete with the butadiene reactant for the coordination site at the metal complex. [Pg.205]

The Michael reaction is the nucleophilic addition of a carbanion to ot,p-unsaturated carbonyl compounds. It is a useful way to make C-C and C-hetero atom bonds. Karodia s group studied the use of the ionic liquid ethyltri- -butylphosphonium tosylate ( -Bu3PEtOTs) as a solvent for... [Pg.176]

Figure 3.1-2 Thermal decomposition temperature ranges (in °C) for ionic liquids containing l-alkyl-3-methylimidazolium cations. The thermal stability of the ionic liquids depends on the nucleophilicity of the anion. Figure 3.1-2 Thermal decomposition temperature ranges (in °C) for ionic liquids containing l-alkyl-3-methylimidazolium cations. The thermal stability of the ionic liquids depends on the nucleophilicity of the anion.
Lancaster, N. L., Salter, P. A., Welton, T., and Young, G., Brent, Nucleophilicity in ionic liquids. 2. Cation effects on halide nucleophilicity in a series of bis [tri-fluoromethylsulfonyl]imide ionic liquids, /. Org. Chem., 67,8855-8861, 2002. [Pg.354]

Ionic liquids are generally regarded as highly stable, and the widely used dial-kylimidazolium ionic liquids are indeed thermostable up to 300 °C [4]. The propensity of the [BF4] and [PF6] anions to hydrolyze with liberation of HF [37], which deactivates many enzymes, has already been mentioned. The [TfO] and [ Tf2N] anions, in contrast, are hydrolytically stable. Dialkylimidazolium cations have a tendency to deprotonate at C-2, with ylide (heterocarbene) formation. Such ylides are strong nucleophiles and have been used as transesterification catalysts, for example [38]. These could cause enzyme deactivation as well as background transesterification when formed in small amounts from anhydrous ionic liquids and basic buffer salts, for example. [Pg.229]

Sarca and Laali199 have used triflic acid in butylmethylimidazolium hexafluor-ophosphate BMIM][PF6 ionic liquid for the benzylation of various arenes with benzyl alcohol [Eq. (5.76)]. When compared with Yb(OTf)3, triflic acid proved to be a better catalyst showing higher selectivity (less dibenzyl ether byproduct) by exhibiting similar activity (typically complete conversion). Of the isomeric products, para isomers dominate. Experimental observations indicate that dibenzyl ether originates from less complete protonation of benzyl alcohol and, consequently, serves as a competing nucleophile. Both substrate selectivity (kT/kB) and positional selectivity (ortho/para ratio) found in competitive benzylation with a benzene-toluene mixture (1 1 molar ratio) are similar to those determined in earlier studies, indicating that the nature of the electrophile is not affected in the ionic liquid. [Pg.560]

Aldol reactions of aldehydes with cycloakanones were performed in ionic liquids and catalyzed by FeCl3-6H20 [32]. Mukaiyama aldol reactions of silylenol ethers with aldehydes can be carried out in aqueous media however, among several Lewis acidic catalysts investigated, iron compounds were not the optimal ones [33], If silyl ketene acetals are applied as carbon nucleophiles in Mukaiyama aldol reactions, cationic Fe(II) complexes give good results. As catalysts, CpFe(CO)2Cl [34] and [CpFe(dppe) (acetone)] BF4 [35] [dppe = l,2-bis(diphenylphosphano)ethane] were applied (Scheme 8.8). No diastereomeric ratio was reported for product 26a. [Pg.222]


See other pages where Nucleophilic ionic liquids is mentioned: [Pg.267]    [Pg.267]    [Pg.267]    [Pg.267]    [Pg.267]    [Pg.267]    [Pg.26]    [Pg.45]    [Pg.221]    [Pg.224]    [Pg.868]    [Pg.1392]    [Pg.129]    [Pg.379]    [Pg.214]    [Pg.227]    [Pg.250]    [Pg.251]    [Pg.191]    [Pg.819]    [Pg.26]    [Pg.221]    [Pg.141]    [Pg.234]    [Pg.175]   
See also in sourсe #XX -- [ Pg.220 , Pg.221 ]




SEARCH



Ionic liquids nucleophilic reactivities

Ionic liquids nucleophilic substitution

Ionic liquids nucleophilic substitution with

Nucleophilicity relative, ionic liquids

Relative nucleophilicities, ionic liquids

© 2024 chempedia.info