Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophile mixed

Indeed formaldehyde is so reactive toward nucleophilic addition that it suppresses the self condensation of the other component by reacting rapidly with any enolate present Aromatic aldehydes cannot form enolates and a large number of mixed aldol con densations have been carried out m which an aromatic aldehyde reacts with an enolate... [Pg.775]

The product is a mixed anhydride Acetic acid acts as a nucleophile and substi tutes for chloride on the benzoyl group... [Pg.838]

The reaction is earned out by mixing the peptide and 1 fluoro 2 4 dmitrobenzene in the presence of a weak base such as sodium carbonate In the first step the base abstracts a proton from the terminal H3N group to give a free ammo function The nucleophilic ammo group attacks 1 fluoro 2 4 dmitrobenzene displacing fluoride... [Pg.1132]

The 7 glutamyl phosphate formed m this step is a mixed anhydride of glutamic acid and phosphoric acid It is activated toward nucleophilic acyl substitution and gives glutamine when attacked by ammonia... [Pg.1163]

The condensation leaves epoxy end groups that are then reacted in a separate step with nucleophilic compounds (alcohols, acids, or amines). Eor use as an adhesive, the epoxy resin and the curing resin (usually an aliphatic polyamine) are packaged separately and mixed together immediately before... [Pg.1015]

Many of these reactions are reversible, and for the stronger nucleophiles they usually proceed the fastest. Typical examples are the addition of ammonia, amines, phosphines, and bisulfite. Alkaline conditions permit the addition of mercaptans, sulfides, ketones, nitroalkanes, and alcohols to acrylamide. Good examples of alcohol reactions are those involving polymeric alcohols such as poly(vinyl alcohol), cellulose, and starch. The alkaline conditions employed with these reactions result in partial hydrolysis of the amide, yielding mixed carbamojdethyl and carboxyethyl products. [Pg.133]

Many organic syntheses requHe the use of stericaHy hindered and less nucleophilic bases than //-butyUithium. Lithium diisopropylamide (LDA) and lithium hexamethyldisilazide (LHS) are often used (140—142). Both compounds are soluble in a wide variety of aprotic solvents. Presence of a Lewis base, most commonly tetrahydrofuran, is requHed for LDA solubdity in hydrocarbons. A 30% solution of LHS can be prepared in hexane. Although these compounds may be prepared by reaction of the amine with //-butyUithium in the approprite medium just prior to use, they are also available commercially in hydrocarbon or mixed hydrocarbon—THF solvents as 1.0—2.0 M solutions. [Pg.229]

Reactions. In general, isoquiaoline undergoes electrophilic substitution reactions at the 5-position and nucleophilic reactions at the 1-position. Nitration with mixed acids produces a 9 1 mixture of 5-nitroisoquiaoline [607-32-9] and 8-nitroisoquinoline [7473-12-3]. The ratio changes slightiy with temperature (143,144). Sulfonation of isoquiaoline gives a mixture with 5-isoquiaolinesulfonic acid [27655-40-9] as the principal product. [Pg.395]

Scheme 6 depicts a typical penicillin sulfoxide rearrangement (69JA1401). The mechanism probably involves an initial thermal formation of a sulfenic acid which is trapped by the acetic anhydride as the mixed sulfenic-acetic anhydride. Nucleophilic attack by the double bond on the sulfur leads to an episulfonium ion which, depending on the site of acetate attack, can afford either the penam (19) or the cepham (20). Product ratios are dependent on reaction conditions. For example, in another related study acetic anhydride gave predominantly the penam product, while chloroacetic anhydride gave the cepham product (7lJCS(O3540). The rearrangement can also be effected by acid in this case the principal products are the cepham (21) and the cephem (22 Scheme 7). Since these early studies a wide variety of reagents have been found to catalyze the conversion of a penicillin sulfoxide to the cepham/cephem ring system (e.g. 77JOC2887). Scheme 6 depicts a typical penicillin sulfoxide rearrangement (69JA1401). The mechanism probably involves an initial thermal formation of a sulfenic acid which is trapped by the acetic anhydride as the mixed sulfenic-acetic anhydride. Nucleophilic attack by the double bond on the sulfur leads to an episulfonium ion which, depending on the site of acetate attack, can afford either the penam (19) or the cepham (20). Product ratios are dependent on reaction conditions. For example, in another related study acetic anhydride gave predominantly the penam product, while chloroacetic anhydride gave the cepham product (7lJCS(O3540). The rearrangement can also be effected by acid in this case the principal products are the cepham (21) and the cephem (22 Scheme 7). Since these early studies a wide variety of reagents have been found to catalyze the conversion of a penicillin sulfoxide to the cepham/cephem ring system (e.g. 77JOC2887).
There are alternatives to the addition-elimination mechanism for nucleophilic substitution of acyl chlorides. Certain acyl chlorides are known to react with alcohols by a dissociative mechanism in which acylium ions are intermediates. This mechanism is observed with aroyl halides having electron-releasing substituents. Other acyl halides show reactivity indicative of mixed or borderline mechanisms. The existence of the SnI-like dissociative mechanism reflects the relative stability of acylium ions. [Pg.486]

Mechanism I was ruled out by an isotopic labeling experiment. The mixed anhydride of salicylic acid and acetic acid is an intermediate if nucleophilic catalysis occurs by mechanism 1. This molecule is known to hydrolyze in water with about 25% incorporation of solvent water into the salicylic acid. [Pg.491]

The curvature may be an artifact of a selection of nucleophiles of mixed structural types chosen to display a wide range in pAo. Buncel et al. ° varied pK by changing the solvent composition over a limited range rather than by changing the structure. They studied the reaction between X-C6H4-CT and p-nitrophenyl acetate in 40-90 mol% dimethylsulfoxide—water mixtures with just three X substituents... [Pg.351]

Sn2 reactions with anionic nucleophiles fall into this class, and observations are generally in accord with the qualitative prediction. Unusual effects may be seen in solvents of low dielectric constant where ion pairing is extensive, and we have already commented on the enhanced nucleophilic reactivity of anionic nucleophiles in dipolar aprotic solvents owing to their relative desolvation in these solvents. Another important class of ion-molecule reaction is the hydroxide-catalyzed hydrolysis of neutral esters and amides. Because these reactions are carried out in hydroxy lie solvents, the general medium effect is confounded with the acid-base equilibria of the mixed solvent lyate species. (This same problem occurs with Sn2 reactions in hydroxylic solvents.) This equilibrium is established in alcohol-water mixtures ... [Pg.409]

As shown in Figure 16.10, this reaction mechanism involves nucleophilic attack by —SH on the substrate glyceraldehyde-3-P to form a covalent acylcysteine (or hemithioaeetal) intermediate. Hydride transfer to NAD generates a thioester intermediate. Nucleophilic attack by phosphate yields the desired mixed carboxylic-phosphoric anhydride product, 1,3-bisphosphoglycerate. Several examples of covalent catalysis will be discussed in detail in later chapters. [Pg.510]

Reaction of lithium 2,5-dimethylpyrrolate ion with [RhCl(CO)2]2 leads to formation of 84 (88PAC1193 90P1503). This is the first example of the mixed mode, when the ti N) and ti (C=C) coordination are realized simultaneously. Nucleophilic addition of triphenylphosphine and triphenylarsine gives 85 (E = P, As). The iridium analogs of 84 and 85 have also been synthesized. [Pg.131]

Phospholes and analogs offer a wide variety of coordination modes and reactivity patterns, from the ti E) (E = P, As, Sb, Bi) through ri -dienic to ri -donor function, including numerous and different mixed coordination modes. Electrophilic substitution at the carbon atoms and nucleophilic properties of the phosphorus atom are well documented. In the ri -coordinated species, group V heteroles nearly acquire planarity and features of the ir-delocalized moieties (heterocymantrenes and -ferrocenes). [Pg.178]

Nucleophilic aromatic substitution of the anion from ary lace ton itrile 113 on the dichloroni-trobenzene 114 results in replacement of the para halogen and formation of 115. Reduction of the nitro group gives the corresponding aniline (116). Acylation of the amine with 3,5-diiodoacetylsa-licylic acid 117 by means of the mixed anhydride formed by use of ethyl chloroformate, gives, after alkaline hydroly.sis, the anthelmintic agent closantel (118) [28]. [Pg.36]

I If one of the carbonyl partners contains no or hydrogens, and thus can t form an enolate ion to become a donor, but does contain an unhindered carbonyl group and so is a good acceptor of nucleophiles, then a mixed aldol reaction is likely to be successful. This is the case, for instance, when either benz-aldehyde or formaldehyde is used as one of the carbonyl partners. [Pg.885]

The situation can be summarized by saying that a mixed aldol reaction leads to a mixture of products unless one of the partners either has no a hydrogens but is a good electrophilic acceptor (such as benzaldehyde) or is an unusually acidic nucleophilic donor (such as ethyl acetoacetate). [Pg.886]

Mixed Claisen-like reactions can also be carried out between an ester and a ketone, resulting in the synthesis of a jS-diketone. The reaction works best when the ester component has no a hydrogens and thus can t act as the nucleophilic donor. For example, ethyl formate gives high yields in mixed Claisen condensations with ketones. [Pg.891]

Like all anhydrides (Section 21.5), the mixed carboxylic-phosphoric anhydride is a reactive substrate in nucleophilic acyl (or phosphoryl) substitution reactions. Reaction of 1,3-bisphosphoglycerate with ADR occurs in step 7 by substitution on phosphorus, resulting in transfer of a phosphate group to ADP and giving ATP plus 3-phosphoglycerate. The process is catalyzed by phospho-gjvcerate kinase and requires Mg2+ as cofactor. Together, steps 6 and 7 accomplish the oxidation of an aldehyde to a carboxylic acid. [Pg.1148]

The C2-symmetric epoxide 23 (Scheme 7) reacts smoothly with carbon nucleophiles. For example, treatment of 23 with lithium dimethylcuprate proceeds with inversion of configuration, resulting in the formation of alcohol 28. An important consequence of the C2 symmetry of 23 is that the attack of the organometallic reagent upon either one of the two epoxide carbons produces the same product. After simultaneous hydrogenolysis of the two benzyl ethers in 28, protection of the 1,2-diol as an acetonide ring can be easily achieved by the use of 2,2-dimethoxypropane and camphor-sulfonic acid (CSA). It is necessary to briefly expose the crude product from the latter reaction to methanol and CSA so that the mixed acyclic ketal can be cleaved (see 29—>30). Oxidation of alcohol 30 with pyridinium chlorochromate (PCC) provides alde-... [Pg.429]

To set the stage for the crucial aza-Robinson annulation, a reaction in which the nucleophilic character of the newly introduced thiolactam function is expected to play an important role, it is necessary to manipulate the methyl propionate side chain in 19. To this end, alkaline hydrolysis of the methyl ester in 19, followed by treatment of the resulting carboxylic acid with isobutyl chlorofor-mate, provides a mixed anhydride. The latter substance is a reactive acylating agent that combines smoothly with diazomethane to give diazo ketone 12 (77 % overall yield from 19). [Pg.475]

The optically active iodide 153 (Scheme 43) can be conveniently prepared from commercially available methyl (S)-(+)-3-hydroxy-2-methylpropionate (154) (see Scheme 41). At this stage of the synthesis, our plan called for the conversion of 153 to a nucleophilic organometallic species, with the hope that the latter would combine with epoxide 152. As matters transpired, we found that the mixed higher order cuprate reagent derived from 153 reacts in the desired and expected way with epoxide 152, affording alcohol 180 in 88% yield this regioselective union creates the C12-C13 bond of rapamycin. [Pg.608]

A further factor which must also be taken into consideration from the point of view of the analytical applications of complexes and of complex-formation reactions is the rate of reaction to be analytically useful it is usually required that the reaction be rapid. An important classification of complexes is based upon the rate at which they undergo substitution reactions, and leads to the two groups of labile and inert complexes. The term labile complex is applied to those cases where nucleophilic substitution is complete within the time required for mixing the reagents. Thus, for example, when excess of aqueous ammonia is added to an aqueous solution of copper(II) sulphate, the change in colour from pale to deep blue is instantaneous the rapid replacement of water molecules by ammonia indicates that the Cu(II) ion forms kinetically labile complexes. The term inert is applied to those complexes which undergo slow substitution reactions, i.e. reactions with half-times of the order of hours or even days at room temperature. Thus the Cr(III) ion forms kinetically inert complexes, so that the replacement of water molecules coordinated to Cr(III) by other ligands is a very slow process at room temperature. [Pg.55]

Lewis acids, particularly the boron trifluroride diethyl ether complex, are used to promote the reaction between allyl(trialkyl)- and allyl(triaryl)stannanes and aldehydes and ketones52-54. The mechanism of these Lewis acid promoted reactions may involve coordination of the Lewis acid to the carbonyl compound so increasing its reactivity towards nucleophilic attack, or in situ transmetalation of the allyl(trialkyl)stannane by the Lewis acid to generate a more reactive allylmetal reagent. Which pathway operates in any particular case depends on the order of mixing of the reagents, the Lewis acid, temperature, solvent etc.55- 58. [Pg.366]


See other pages where Nucleophile mixed is mentioned: [Pg.157]    [Pg.354]    [Pg.736]    [Pg.157]    [Pg.354]    [Pg.736]    [Pg.329]    [Pg.2]    [Pg.400]    [Pg.186]    [Pg.419]    [Pg.329]    [Pg.438]    [Pg.301]    [Pg.129]    [Pg.215]    [Pg.154]    [Pg.1148]    [Pg.1287]    [Pg.115]    [Pg.202]    [Pg.458]    [Pg.772]    [Pg.258]    [Pg.1498]   
See also in sourсe #XX -- [ Pg.1266 , Pg.1267 ]




SEARCH



© 2024 chempedia.info