Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid state nuclear magnetic resonance

Nuclear magnetic resonance Physical state and chemical analysis Native material or solid or liquid extract ... [Pg.1444]

Nuclear magnetic resonance (NMR) spectroscopy is, next to X-ray diffraction, the most important method to elucidate molecular structures of small molecules up to large bio macromolecules. It is used as a routine method in every chemical laboratory and it is not the aim of this article to give a comprehensive review about NMR in structural analysis. We will concentrate here on liquid-state applications with respect to drugs or drug-like molecules to emphasize techniques for conformational analysis including recent developments in the field. [Pg.208]

Low Resolution Nuclear Magnetic Resonance (LR-NMR) systems are routinely used for food quality assurance in laboratory settings [25]. NMR based techniques are standardized and approved by the American Oil Chemist s Society (AOCS) (AOCSd 16b-93, AOCS AK 4-95), the International Union of Pure and Applied Chemistry (IUPAC) (solid fat content, IUPAC Norm 2.150) and the International Standards Organization (ISO) (oil seeds, ISO Dis/10565, ISO CD 10632). In addition to these standardized tests, low resolution NMR is used to measure moisture content, oil content and the state (solid or liquid) of fats in food. Table 4.7.1 summarizes common food products that are analyzed by low-resolution NMR for component concentration. [Pg.480]

Iwahashi, M. Hayashi, Y. Hachiya, N. Matsuzawa, H. Kobayashi, H., Self-association of octan-l-ol in the pure liquid state and in decane solutions as observed by viscosity, selfdiffusion, nuclear magnetic resonance and near-infrared spectroscopy measurements, J. Chem. Soc. Faraday Trans. 89, 707-712 (1993). [Pg.255]

Nuclear magnetic resonance provides means to study molecular dynamics in every state of matter. When going from solid state over liquids to gases, besides mole- cular reorientations, translational diffusion occurs as well. CD4 molecule inserted into a zeolite supercage provides a new specific model system for studies of rotational and translational dynamics by deuteron NMR. [Pg.169]

In addition to the above prescriptions, many other quantities such as solution phase ionization potentials (IPs) [15], nuclear magnetic resonance (NMR) chemical shifts and IR absorption frequencies [16-18], charge decompositions [19], lowest unoccupied molecular orbital (LUMO) energies [20-23], IPs [24], redox potentials [25], high-performance liquid chromatography (HPLC) [26], solid-state syntheses [27], Ke values [28], isoelectrophilic windows [29], and the harmonic oscillator models of the aromaticity (HOMA) index [30], have been proposed in the literature to understand the electrophilic and nucleophilic characteristics of chemical systems. [Pg.180]

In the standard mathematical expressions for the contribution of quadrupolar relaxation to the relaxation rates of the quadrupolar nucleus (in nuclear magnetic resonance), rapid isotropic motion is assumed to occur. This behavior, in most cases, will not be true in the solid or liquid crystalline state ". ... [Pg.391]

Nuclear Magnetic Resonance Spectroscopy (NMR) is now widely regarded as having evolved into a discipline in its own right. The field has become immensely diverse, ranging from medical use through solid state NMR to liquid state applications, with countless books and scientific journals devoted to these topics. The theoretical as well as experimental advances continue to be rapid, and have in fact been accelerated by many novel innovations. [Pg.365]

The models in Figures 2 and 3 show that a part of the low molecular weight liquid obviously separates the polymer chains from each other, thus facilitating segment mobility. Another part of it fills the cavities and displays almost liquid state behavior in them. This rather simplified model of the glass structure has been verified in some by nuclear magnetic resonance experiments. [Pg.59]

Liquids are difficult to model because, on the one hand, many-body interactions are complicated on the other hand, liquids lack the symmetry of crystals which makes many-body systems tractable [364, 376, 94]. No rigorous solutions currently exist for the many-body problem of the liquid state. Yet the molecular properties of liquids are important for example, most chemistry involves solutions of one kind or another. Significant advances have recently been made through the use of spectroscopy (i.e., infrared, Raman, neutron scattering, nuclear magnetic resonance, dielectric relaxation, etc.) and associated time correlation functions of molecular properties. [Pg.374]

With the advent of advanced characterization techniques such as multiple detector liquid exclusion chromatography and - C Fourier transform nuclear magnetic resonance spectroscopy, the study of structure/property relationships in polymers has become technically feasible (l -(5). Understanding the relationship between structure and properties alone does not always allow for the solution of problems encountered in commercial polymer synthesis. Certain processes, of which emulsion polymerization is one, are controlled by variables which exert a large influence on polymer infrastructure (sequence distribution, tacticity, branching, enchainment) and hence properties. In addition, because the emulsion polymerization takes place in an heterophase system and because the product is an aqueous dispersion, it is important to understand which performance characteristics are influended by the colloidal state, (i.e., particle size and size distribution) and which by the polymer infrastructure. [Pg.386]

Nuclear magnetic resonance (NMR) spectroscopy is routinely applied to small carbohydrate molecules. NMR spectroscopy is based on the principle that radiofrequencies are absorbed by hydrogen and carbon atoms ( H and 13C) spinning in one of two directions (spin quantum number +1 /2) in a magnetic field. In liquids, absorption is recorded as sharp peaks. The frequency displacement (chemical shift) is a function of the H and 1SC surroundings. +A is proportional to the number of photons absorbed between these two quantum states, correlating well with anomeric and... [Pg.140]

FID = flame ionization detector GC = gas chromatography HPLC = high performance liquid chromatography NMR = nuclear magnetic resonance NS = not stated NSD = nitrogen specific detector TMS = tetramethylsi 1ane UV = ultraviolet. [Pg.102]

Spectroscopic methods, such as FT-infrared (FTIR) and Raman spectroscopy detect changes in molecular vibrational characteristics in noncrystalline solid and supercooled liquid states. Various nuclear magnetic resonance (NMR) techniques and electron spin resonance (ESR) spectroscopy, however, are more commonly used, detecting transition-related changes in molecular rotation and diffusion (Champion et al. 2000). These methods have been used for studies of the amorphous state of a number of sugars in dehydrated and freeze-concentrated systems (Roudaut et al. 2004). [Pg.73]

There are a variety of analytical methods commonly used for the characterization of neat soap and bar soaps. Many of these methods have been published as official methods by the American Oil Chemists Society (29). Additionally, many analysts choose United States Pharmacopoeia (USP), British Pharmacopoeia (BP), or Pood Chemical Codex (FCC) methods. These methods tend to be colorimetric, potentiometric, or titrametric procedures. However, a variety of instmmental techniques are also frequendy utilized, eg, gas chromatography, high performance liquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry. [Pg.159]

Solid Fat Content Many methods for measuring SFC have been developed. These include dilatometry, calorimetry, and pulsed nuclear magnetic resonance (pNMR). Dilatometry and calorimetry use measurements of volume or heat content ratios between the completely liquid and the completely solid states (42). Dilatometry and calorimetry methods are time consuming and tend to be applicable only when the SFC is less than 50% (42). Therefore, pNMR has become the most commonly used method for SFC determination. [Pg.171]


See other pages where Liquid state nuclear magnetic resonance is mentioned: [Pg.244]    [Pg.1499]    [Pg.282]    [Pg.627]    [Pg.65]    [Pg.190]    [Pg.265]    [Pg.785]    [Pg.343]    [Pg.303]    [Pg.267]    [Pg.288]    [Pg.124]    [Pg.187]    [Pg.141]    [Pg.153]    [Pg.232]    [Pg.358]    [Pg.209]    [Pg.93]    [Pg.181]    [Pg.290]    [Pg.31]    [Pg.80]    [Pg.583]    [Pg.283]    [Pg.98]    [Pg.98]    [Pg.105]    [Pg.296]    [Pg.1242]    [Pg.2997]   
See also in sourсe #XX -- [ Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 , Pg.104 , Pg.105 , Pg.106 , Pg.107 , Pg.108 , Pg.109 , Pg.110 , Pg.111 ]




SEARCH



Liquid magnets

Resonant liquids

Resonant states

Resonating states

© 2024 chempedia.info