Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles reactions with amides

The pharmacological versatility of this general substitution strategy is further illustrated by diazonium coupling of 14 with 2-nitrobenzenediazonium chloride to produce biarylal-dehyde 18. Formation of the oxime with hydroxylamine is followed by dehydration to the nitrile. Reaction with anhydrous methanolic hydrogen chloride leads to imino ether and addition-elimination of ammonia leads to the antidepressant amid-ine, nitrafudam (20). ... [Pg.130]

Cross coupling between an aryl halide and an activated alkyl halide, catalysed by the nickel system, is achieved by controlling the rate of addition of the alkyl halide to the reaction mixture. When the aryl halide is present in excess, it reacts preferentially with the Ni(o) intermediate whereas the Ni(l) intermediate reacts more rapidly with an activated alkyl halide. Thus continuous slow addition of the alkyl halide to the electrochemical cell already charged with the aryl halide ensures that the alkyl-aryl coupled compound becomes the major product. Activated alkyl halides include benzyl chloride, a-chloroketones, a-chloroesters and amides, a-chloro-nitriles and vinyl chlorides [202, 203, 204], Asymmetric induction during the coupling step occurs with over 90 % distereomeric excess from reactions with amides such as 62, derived from enantiomerically pure (-)-ephedrine, even when 62 is a mixture of diastereoisomcrs prepared from a racemic a-chloroacid. Metiha-nolysis of the amide product affords the chiral ester 63 and chiral ephedrine is recoverable [205]. [Pg.140]

A variety of catalysts has been used to promote the Clauson-Kaas reaction. The most common are Bronsted acids but a variety of other Lewis acids have also seen some use. An interesting report by Fang used phosphorus pentoxide in toluene to shorten reaction times.Others have commented that care must be taken to rigorously remove water from this reaction with amides to avoid the generation of nitriles. ... [Pg.46]

Nitriles react with amides by initial deprotonation at the a position or by addition of NH2 and formation of amidine salts. The extent of each reaction channel depends on the reaction conditions, the acidity of the nitrile, and the existence of fast, secondary reactions [1,2]. [Pg.268]

Hydrolysis may be effected with 10-20 per cent, sodium hydroxide solution (see p-Tolunitrile and Benzonitrile in Section IV,66) or with 10 per cent, methyl alcoholic sodium hydroxide. For diflScult cases, e.g., a.-Naphthoniirile (Section IV,163), a mixture of 50 per cent, sulphuric acid and glacial acetic acid may be used. In alkahne hydrolysis the boiling is continued until no more ammonia is evolved. In acid hydro-lysis 2-3 hours boiling is usually sufficient the reaction product is poured into water, and the organic acid is separated from any unchanged nitrile or from amide by means of sodium carbonate solution. The resulting acid is identified as detailed in Section IV,175. [Pg.805]

Nitdles may be prepared by several methods (1). The first nitrile to be prepared was propionitdle, which was obtained in 1834 by distilling barium ethyl sulfate with potassium cyanide. This is a general preparation of nitriles from sulfonate salts and is referred to as the Pelou2e reaction (2). Although not commonly practiced today, dehydration of amides has been widely used to produce nitriles and was the first commercial synthesis of a nitrile. The reaction of alkyl hahdes with sodium cyanide to produce nitriles (eq. 1) also is a general reaction with wide appHcabiUty ... [Pg.217]

Although acetonitrile is one of the more stable nitriles, it undergoes typical nitrile reactions and is used to produce many types of nitrogen-containing compounds, eg, amides (15), amines (16,17) higher molecular weight mono- and dinitriles (18,19) halogenated nitriles (20) ketones (21) isocyanates (22) heterocycles, eg, pyridines (23), and imidazolines (24). It can be trimerized to. f-trimethyltriazine (25) and has been telomerized with ethylene (26) and copolymerized with a-epoxides (27). [Pg.219]

Some of the physical properties of fatty acid nitriles are Hsted in Table 14 (see also Carboxylic acids). Eatty acid nitriles are produced as intermediates for a large variety of amines and amides. Estimated U.S. production capacity (1980) was >140, 000 t/yr. Eatty acid nitriles are produced from the corresponding acids by a catalytic reaction with ammonia in the Hquid phase. They have Httie use other than as intermediates but could have some utility as surfactants (qv), mst inhibitors, and plastici2ers (qv). [Pg.226]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

Owing to poor volatihty, derivatization of nicotinic acid and nicotinamide are important techniques in the gc analysis of these substances. For example, a gc procedure has been reported for nicotinamide using a flame ionisation detector at detection limits of - 0.2 fig (58). The nonvolatile amide was converted to the nitrile by reaction with heptafluorobutryic anhydride (56). For a related molecule, quinolinic acid, fmol detection limits were claimed for a gc procedure using either packed or capillary columns after derivatization to its hexafluoroisopropyl ester (58). [Pg.51]

Carboxylic acid derivatives on pyridopyrimidine rings appear to undergo normal reactions with electrophilic reagents, e.g. the 6-amide (70) is dehydrated to the 6-nitrile with phosphorus oxychloride. [Pg.210]

It was found inadvisable to use more than four molecules of form-amide [ (47) when R = H] per molecule of anthranilic acid and the condensation produces best results when the mixture is heated at 120 -130°C for 2 hr followed by further heating at 170°-180 C for 2 hr. Other variants of this reaction involve the use of ammonium o-acylaminobenzoates, anthranilic acid in the presence of nitriles and acetic anhydride, o-acetamidonitrile with acetic anhydride or hydrogen peroxide, anthranilic esters and aliphatic or aromatic amides or amidines, isatoic anhydride with amides or amidines, and anthranilic esters with aryl iminochlorides in acetoned The mechanism proposed by Bogert and Gotthelf has had experimental supporR and is represented in Scheme 12. [Pg.292]

Replacement of the ketone by an amide leads to Increased potency. Hydrolysis of nitrile, 133 (obtained by alkylation of diphenylacetonitrile with the morpholine analog of the chloro-amine used in the original preparation of methadone), affords acid, 134. Conversion to the acid chloride followed by reaction with pyrrolidine affords racemoramide (135) Separation of the (+) isomer by optical resolution gives dextromoramide, an analgesic an order of magnitude more potent than methadone. [Pg.82]

Antispasmodic activity, interestingly, is maintained even in the face of the deletion of the ethanolamine ester side chain. Reaction of anisaldehyde with potassium cyanide and dibutylamine hydrochloride affords the corresponding a-aminonitrile (72) (a functionality analogous to a cyanohydrin). Treatment with sulfuric acid hydrolyzes the nitrile to the amide to yield ambucet-amide (73). ... [Pg.94]

Solvents influence the hydrogenation of oximes in much the same way as they do hydrogenation of nitriles. Acidic solvents prevent the formation of secondary amines through salt formation with the initially formed primary amine. A variety of acids have been used for this purpose (66 ), but acids cannot always be used interchangeably (43). Primary amines can be trapped also as amides by use of an anhydride solvent (2,/5,57). Ammonia prevents secondary amine formation through competition of ammonia with the primary amine in reaction with the intermediate imine. Unless the ammonia is anhydrous hydrolysis reactions may also occur. [Pg.100]

Nitriles are similar in some respects to carboxylic acids and are prepared either by SN2 reaction of an alkyl halide with cyanide ion or by dehydration of an amide. Nitriles undergo nucleophilic addition to the polar C=N bond in the same way that carbonyl compounds do. The most important reactions of nitriles are their hydrolysis to carboxylic acids, reduction to primary amines, and reaction with organometallic reagents to yield ketones. [Pg.774]

Many types of carbonyl compounds, including aldehydes, ketones, esters, thioesters, acids, and amides, can be converted into enolate ions by reaction with LDA. Table 22.1 lists the approximate pKa values of different types of carbonyl compounds and shows how these values compare to other acidic substances we ve seen. Note that nitriles, too, are acidic and can be converted into enolate-like anions. [Pg.851]

Ketones and carboxylic esters can be a hydroxylated by treatment of their enolate forms (prepared by adding the ketone or ester to LDA) with a molybdenum peroxide reagent (MoOs-pyridine-HMPA) in THF-hexane at -70°C. The enolate forms of amides and estersand the enamine derivatives of ketones can similarly be converted to their a hydroxy derivatives by reaction with molecular oxygen. The M0O5 method can also be applied to certain nitriles. Ketones have also been Qc hydroxylated by treating the corresponding silyl enol ethers with /n-chloroperoxy-... [Pg.915]

Conventional conversion of amide, lactam, imide, and urea carbonyl groups into enaminones, enamino esters, or enamino nitriles requires prior activation of the carbonyl groups either by alkylation to imino ethers, followed by reaction with activated methylene groups, or by thiation, e.g. with P2S5, to thiocarbonyl groups followed by alkylation (and possibly also oxidation), and, again, subsequent reac-... [Pg.73]

Formazans are stable in alkaline solution. Alkaline hydrolysis of functionalities on formazans such as nitriles, esters, and amides leads to the acids (Section 7.3.1.1). The case of 3-nitroformazans (198) is unique. Reaction with hydroxide ion gives 3-hydroxy formazan (199) which can be readily oxidized to the tetrazolium betaine. In the presence of hydrosulfide, a reduction of the nitro group takes place giving 3-aminoformazan (200) with traces of the 3-mercaptoformazan (201), which by contrast is the main product when ammonium polysulfide is used (Scheme 30).45,346... [Pg.263]

Thiadiazoles have proven of some utility as aromatic nuclei for medicinal agents. For example, the previous volume detailed the preparation of a series of "azolamide" diuretic agents based on this class of heterocycle. It is thus of note that the 1,2,5-thiadiazole ring provides the nucleus for a clinically useful agent for treatment of hypertension which operates by an entirely different mechanism, p-adrenergic blockade. In its preparation, reaction of the amide-nitrile 211 with sulfur monochloride leads directly to the substituted thiadiazole 212. ... [Pg.271]

Thioamides have been transformed into the corresponding nitriles. Treatment of primary thioamides by tellurium tetrachloride or selenium tetrachloride in combination with triethylamine affords nitriles.66 Treatment of primary amides and thioamides with l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) gives nitriles.67 Reactions of thioamides with metal carboxylates in organic solvents enables the selective preparation of nitriles, imides or amides depending on the substitution pattern of the starting material (Scheme 33).68... [Pg.156]


See other pages where Nitriles reactions with amides is mentioned: [Pg.222]    [Pg.1179]    [Pg.186]    [Pg.618]    [Pg.836]    [Pg.186]    [Pg.158]    [Pg.223]    [Pg.329]    [Pg.27]    [Pg.28]    [Pg.373]    [Pg.425]    [Pg.780]    [Pg.1189]    [Pg.268]    [Pg.485]   
See also in sourсe #XX -- [ Pg.6 , Pg.569 ]

See also in sourсe #XX -- [ Pg.569 ]

See also in sourсe #XX -- [ Pg.6 , Pg.569 ]

See also in sourсe #XX -- [ Pg.569 ]




SEARCH



Amidating reaction

Amidation reactions

Amide Reaction

Amides nitriles

Nitriles reactions

Reaction with amides

Reaction with nitriles

© 2024 chempedia.info