Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile rubber acrylonitrile content

Nitrile rubber (acrylonitrile-butadiene copolymer) is a unique elastomer. The acrylonitrile content of the commercial elastomers ranges from 25% to 50% with 34% being a typical value. This nonhydrocarbon monomer imparts to the copolymer very good hydrocarbon oil and gasoline resistance. The oil resistance increases with increasing amounts of acrylonitrile in the copolymer. Nitrile rubber is also noted for its high strength and excellent resistance to abrasion, water, alcohols, and heat. Its drawbacks are poor dielectric properties and poor resistance to ozone. [Pg.413]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

Nitrile Rubber. Nitrile mbbers are made by the emulsion copolymerization of acrylonitrile (9—50%) and butadiene (6) and designated NBR. The ratio of acrylonitrile (ACN) to butadiene has a direct effect on the properties on the nature of the polymers. As the ACN content increases, the oil resistance of the polymer increases (7). As the butadiene content increases, the low temperature properties of the polymer are improved (see Elastomers, SYNTHETIC-NITRILE RUBBER). [Pg.232]

Hydrogenated nitrile rubbers were introduced in the mid-1980s as Therban by Bayer. The initial grade had an acrylonitrile content of only 17% instead of approx. 34% in conventional NBR. Whilst non-sulphur-curing systems such as the use of peroxides with triallyl cyanurate or isocyanurate are necessary, the saturated rubber has a number of advantages over NBR. These include improved... [Pg.294]

Although the nitrile rubbers employed normally contain about 35% acrylonitrile the inclusion of nitrile rubber with a higher butadiene content will increase the toughness at low temperatures. For example, whereas the typical blend cited above has an impact strength of only 0.9 ft Ibf in notch at 0°F, a blend of 70 parts styrene-acrylonitrile, 30 parts of nitrile rubber (35% acrylonitrile) and 10 parts nitrile rubber (26% acrylonitrile) will have an impact value of 4.5 ftlbfin notch at that temperature. ... [Pg.442]

Nitrile rubber/phenolic resin blends. Blends of equal parts by weight of a nitrile rubber and a phenolic resin in methyl ethyl ketone (at a 20-30 wt% total solids content) is suitable for many adhesive purposes. The more phenolic resin in the formulation, the greater the bond strength and brittleness of the NBR adhesive [67]. Table 10 shows the effect of phenolic resin on nitrile rubber properties. On the other hand, the higher the acrylonitrile content in the rubber. [Pg.659]

Nitrile rubber (NBR) was first commercialized by I.G. Farbindustry, Germany, in 1937, under the trade name of Buna N. Its excellent balance of properties confers it an important position in the elastomer series. Nitrile rubber, a copolymer of butadiene and acrylonitrile, is widely used as an oil-resistant rubber. The acrylonitrile content decides the ultimate properties of the elastomer. In spite of possessing a favorable combination of physical properties, there has been a continuous demand to improve the aging resistance of NBR due to the tougher requirements of industrial and automotive applications. [Pg.555]

Although, the heat resistance of NBR is directly related to the increase in acrylonitrile content (ACN) of the elastomer, the presence of double bond in the polymer backbone makes it susceptible to heat, ozone, and light. Therefore, several strategies have been adopted to modify the nitrile rubber by physical and chemical methods in order to improve its properties and degradation behavior. The physical modification involves the mechanical blending of NBR with other polymers or chemical ingredients to achieve the desired set of properties. The chemical modifications, on the other hand, include chemical reactions, which impart structural changes in the polymer chain. [Pg.555]

The generic term applied to all elastomers resulting from the copolymerisation of butadiene and acrylonitrile. Nitrile rubbers are available with different butadiene/acrylonitrile ratios ranging from 18% to 50%, a high acrylonitrile content giving rubbers excellent oil resistance, a lower acrylonitrile content giving improved low-temperature flexibility. [Pg.43]

As the acrylonitrile content in nitrile rubber increases, so does the resistance to nonpolar solvents. [Pg.261]

Berlin and coworkers (5,56) desired to obtain a material with an increased mechanical strength. They carried out a plasticization of bulk ami emulsion polystyrene molecular weight 80000 and 200000 respectively at 150-160° C, with polyisobutylene, butyl rubber, polychloroprene, polybutadiene, styrene rubber (SKS-30) and nitrile rubber (SKN 18 and SKN 40). The best results were obtained with the blends polystyrene-styrene rubber and polystyrene-nitrile rubber. An increase of rubber content above 20-25% was not useful, as the strength properties were lowered. An increase in the content of the polar comonomer, acrylonitrile, prevents the reaction with polystyrene and decreases the probability of macroradical combination. This feature lowers the strength, see Fig. 14. It was also observed that certain dyes acts as macroradical acceptors, due to the mobile atoms of hydrogen of halogens in the dye, AX ... [Pg.34]

Nitrile rubbers, the original driving force behind acrylonitrile production, have taken a less significant place as end-use products. They are butadiene-acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45%, and find industrial applications in... [Pg.46]

To control compatibility and other properties of butadiene/acrylonitrile copolymers with PVC, there is an optimum acrylonitrile content of 37%. For practical handling, the nitrile rubber is treated on rolls at normal temperatures, and afterwards the mixture is rolled with PVC at elevated temperatures. The reverse process—plasticizing PVC first and mixing with nitrile rubber afterwards—is not so favorable because discoloring and decomposition may occur. This can be avoided by simultaneously applying the liquid plasticizers. Nitrile content in-... [Pg.97]

Except for the monomers used, the production of NBRs is quite similar to that described for the SBRs. The NBR family is sometimes referred to as the nitrile rubbers. The acrylonilnle-buiadiene ratios cover a wide range from 15 85 to 50.50. NBRs are noted for their solvent resistance, increasing wiih the acrylonitrile content Thus, they are used for gaskets and oil and gasoline hoses, solvent-resistant electrical insulation, and Ibod-wrnpping films. Nitrile lattices also are used in treating fabrics for dry-cleaning durability. Because the NBRs become quite inflexible (stiff) at low temperatures (actually brittle at about -20 C). they arc blended with polyvinyl chloride for some applications. [Pg.541]

Acrylonitrile-Butadiene Rubbers (NBR). Acrylonitrile-butadiene rubbers (NBR), or simply nitrile rubbers, are copolymers of butadiene and acrylonitrile. They are available in five grades based on the acrylonitrile (ACN) content. [Pg.33]

Like styrene content determination, acrylonitrile content in nitrile rubber can be determined with IR spectra following the quantitative analysis method. Butadiene units, adding up to an acrylonitrile unit in the polymer chain, show a strong tendency to add... [Pg.88]

Recently, nanocomposites were prepared with different grades of nitrile rubber with acrylonitrile contents of 19%, 34%i, and 50%i, with SBR (23%i styrene content), and with polybutadiene rubber with Na-montmorillonite clay. The clay was modified with... [Pg.2878]

These are generally manufactured by the emulsion copolymerisation process. The commercially available nitrile rubbers differ from one another in three aspects acrylonitrile content, polymerisation temperature and mooney viscosity. The content of acrylonitrile has a profound effect on the properties of vulcanised nitrile rubber, influencing its resistance to oils and fuels. [Pg.46]

Several investigators have looked at PVC blends with nitrile-butadiene rubber (6, 8), and, although compatibility increased with acrylonitrile content (up to about 40 wt %), micro-heterogeneity was still evident in electron photomicrographs. [Pg.248]

Acrylonitrile Content in Copolymer (%) Properties of Nitrile Rubber... [Pg.168]

Nitrile rubber is a copolymer of acrylonitrile and butadiene. The poor resistance to oil is due to the butadiene component. Acrylonitrile is highly polar, and its introduction into the structure therefore enhances the oil resistance of the copolymer, the extent of which depends on its content in the copolymer. [Pg.488]

Nitrile polymers used for the manufacture of adhesives generally contain 25% or more acrylonitrile, but in the base polymer the acrylonitrile content can vary from 15% to 50%. Increasing the acrylonitrile content improves the oil and plasticizer resistance and increases the polarity of the compound. However, higher levels of acrylonitrile also increase the hardness and modulus of the polymer, reducing the elasticity of the resulting polymer. Nitrile rubber can be produced by a cold (5°C) or hot (25-50°C) process, with most adhesive polymers produced by the hot process which induces more chain branching. Nitriles can be combined with other monomers in solution polymerization which increases functionality and improves compatibility with other reactive resins like acrylics, epoxies, and polyurethanes. [Pg.520]


See other pages where Nitrile rubber acrylonitrile content is mentioned: [Pg.84]    [Pg.589]    [Pg.930]    [Pg.565]    [Pg.570]    [Pg.37]    [Pg.94]    [Pg.101]    [Pg.142]    [Pg.708]    [Pg.355]    [Pg.433]    [Pg.375]    [Pg.132]    [Pg.46]    [Pg.427]    [Pg.455]    [Pg.137]    [Pg.59]    [Pg.570]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Acrylonitrile rubber

Nitrile acrylonitrile

Nitrile content

Nitrile rubber

Rubber content

© 2024 chempedia.info