Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel, synthesis

Mixed-sandwich complexes with cyclodextrins, 12, 787 iridium cyclopentadienyl complexes, 7, 368 with nickel, synthesis and reactivity, 8, 160 with vanadium, 5, 47... [Pg.146]

Nickel(O) forms a n-complex with three butadiene molecules at low temperature. This complex rearranges spontaneously at 0 °C to afford a bisallylic system, from which a large number of interesting olefins can be obtained. The scheme given below and the example of the synthesis of the odorous compound muscone (R. Baker, 1972, 1974 A.P. Kozikowski, 1976) indicate the variability of such rearrangements (P. Heimbach, 1970). Nowadays many rather complicated cycloolefins are synthesized on a large scale by such reactions and should be kept in mind as possible starting materials, e.g. after ozonolysis. [Pg.41]

Nickel-allyl complexes prepared from Ni(CO)4 and allyl bromides are useful for the ole-fination of alkyl bromides and iodides (E.J. Corey, 1967 B A.P. Kozikowski, 1976). The reaction has also been extended to the synthesis of macrocycles (E.J. Corey, 1967 C, 1972A). [Pg.42]

The Gassman synthesis has been a particularly useful method for the synthesis of oxindolcs[lb,8]. Use of methylthioacetate esters in the reactions leads to 3-(methylthio)oxindoles which can be desulfurized with Raney nickel. Desulfurization can also be done by reduction with zinc or tin[10,ll]. [Pg.73]

Sorbitol is a sweetener often substituted for cane sugar because it is better tolerated by dia betics It IS also an intermediate in the commercial synthesis of vitamin C Sorbitol is prepared by high pressure hydrogenation of glucose over a nickel catalyst What is the structure (including stereochemistry) of sorbitoP... [Pg.658]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

Acetylene-Based Routes. Walter Reppe, the father of modem acetylene chemistry, discovered the reaction of nickel carbonyl with acetylene and water or alcohols to give acryUc acid or esters (75,76). This discovery led to several processes which have been in commercial use. The original Reppe reaction requires a stoichiometric ratio of nickel carbonyl to acetylene. The Rohm and Haas modified or semicatalytic process provides 60—80% of the carbon monoxide from a separate carbon monoxide feed and the remainder from nickel carbonyl (77—78). The reactions for the synthesis of ethyl acrylate are... [Pg.155]

The stoichiometric and the catalytic reactions occur simultaneously, but the catalytic reaction predominates. The process is started with stoichiometric amounts, but afterward, carbon monoxide, acetylene, and excess alcohol give most of the acrylate ester by the catalytic reaction. The nickel chloride is recovered and recycled to the nickel carbonyl synthesis step. The main by-product is ethyl propionate, which is difficult to separate from ethyl acrylate. However, by proper control of the feeds and reaction conditions, it is possible to keep the ethyl propionate content below 1%. Even so, this is significantly higher than the propionate content of the esters from the propylene oxidation route. [Pg.155]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

Nickel fluoride is used in marking ink compositions (see Inks), for fluorescent lamps (4) as a catalyst in transhalogenation of fluoroolefins (5), in the manufacture of varistors (6), as a catalyst for hydrofluorination (7), in the synthesis of XeF (8), and in the preparation of high purity elemental fluorine for research (9) and for chemical lasers (qv) (10). [Pg.214]

Goal Upgrading via Fischer-Tropsch. The synthesis of methane by the catalytic reduction of carbon monoxide and hydrogen over nickel and cobalt catalysts at atmospheric pressure was reported in 1902 (11). [Pg.79]

Methane. The largest use of methane is for synthesis gas, a mixture of hydrogen and carbon monoxide. Synthesis gas, in turn, is the primary feed for the production of ammonia (qv) and methanol (qv). Synthesis gas is produced by steam reforming of methane over a nickel catalyst. [Pg.400]

The second reaction is called the Fischer-Tropsch synthesis of hydrocarbons. Depending on the conditions and catalysts, a wide range of hydrocarbons from very light materials up to heavy waxes can be produced. Catalysts for the Fischer-Tropsch reaction iaclude iron, cobalt, nickel, and mthenium. Reaction temperatures range from about 150 to 350°C reaction pressures range from 0.1 to tens of MPa (1 to several hundred atm) (77). The Fischer-Tropsch process was developed iadustriaHy under the designation of the Synthol process by the M. W. Kellogg Co. from 1940 to 1960 (83). [Pg.416]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

Nickel plays a role in the Reppe polymeriza tion of acetylene where nickel salts act as catalysts to form cyclooctatetraene (62) the reduction of nickel haUdes by sodium cyclopentadienide to form nickelocene [1271 -28-9] (63) the synthesis of cyclododecatrienenickel [39330-67-1] (64) and formation from elemental nickel powder and other reagents of nickel(0) complexes that serve as catalysts for oligomerization and hydrocyanation reactions (65). [Pg.11]

Other Specialty Chemicals. In fuel-ceU technology, nickel oxide cathodes have been demonstrated for the conversion of synthesis gas and the generation of electricity (199) (see Fuel cells). Nickel salts have been proposed as additions to water-flood tertiary cmde-oil recovery systems (see Petroleum, ENHANCED oil recovery). The salt forms nickel sulfide, which is an oxidation catalyst for H2S, and provides corrosion protection for downweU equipment. Sulfur-containing nickel complexes have been used to limit the oxidative deterioration of solvent-refined mineral oils (200). [Pg.15]

P. W. Jolly and G. Wdke, The Organic Chemistry of Nickel, Vol. I, OiganometaUic Complexes, Academic Press, Inc., New York, 1974. P. W. Jolly and G. Wdke, The Organic Chemistry of Nickel, Vol. II, Oiganic Synthesis, Academic Press, Inc., New York, 1975. [Pg.18]

Another synthesis of pyrogaHol is hydrolysis of cyclohexane-l,2,3-trione-l,3-dioxime derived from cyclohexanone and sodium nitrite (16). The dehydrogenation of cyclohexane-1,2,3-triol over platinum-group metal catalysts has been reported (17) (see Platinum-GROUP metals). Other catalysts, such as nickel, rhenium, and silver, have also been claimed for this reaction (18). [Pg.377]

A low temperature catalytic process has been reported (64). The process involves the divalent nickel- or zero-valent palladium-catalyzed self-condensation of halothiophenols in an alcohol solvent. The preferred halothiophenol is -bromothiophenol. The relatively poor solubiHty of PPS under the mild reaction conditions results in the synthesis of only low molecular weight PPS. An advantage afforded by the mild reaction conditions is that of making telecheHc PPS with functional groups that may not survive typical PPS polymerization conditions. [Pg.444]

An elegant synthesis method which is specific to sulfone polymers containing phenyl—phenyl linkages (such as PPSF) is the nickel-catalysed coupling of aryl dihahdes. The scheme for this synthesis involves a two-step process. First, an aromatic dihaUde intermediate is formed which carries the backbone features of the desired polymer. This aromatic dihahde intermediate is then self-coupled in the presence of sero-valent nickel, triphenylphosphine, and excess sine to form the biphenyl- or terphenyl-containing polymer. AppHcation of this two-step scheme to PPSF can be depicted as follows ... [Pg.463]

Ammonium sulfate is also recovered as a by-product in large amounts during the coking of coal, nickel refining, and organic monomer synthesis, particularly during production of caprolactam (qv). About four metric tons of ammonium sulfate are produced per ton of caprolactam which is an intermediate in the production of nylon. [Pg.368]

Tubular Fixed-Bed Reactors. Bundles of downflow reactor tubes filled with catalyst and surrounded by heat-transfer media are tubular fixed-bed reactors. Such reactors are used most notably in steam reforming and phthaUc anhydride manufacture. Steam reforming is the reaction of light hydrocarbons, preferably natural gas or naphthas, with steam over a nickel-supported catalyst to form synthesis gas, which is primarily and CO with some CO2 and CH. Additional conversion to the primary products can be obtained by iron oxide-catalyzed water gas shift reactions, but these are carried out ia large-diameter, fixed-bed reactors rather than ia small-diameter tubes (65). The physical arrangement of a multitubular steam reformer ia a box-shaped furnace has been described (1). [Pg.525]

The methanation reaction is carried out over a catalyst at operating conditions of 503—723 K, 0.1—10 MPa (1—100 atm), and space velocities of 500—25,000 h . Although many catalysts are suitable for effecting the conversion of synthesis gas to methane, nickel-based catalysts are are used almost exclusively for industrial appHcations. Methanation is extremely exothermic (AT/ qq = —214.6 kJ or —51.3 kcal), and heat must be removed efficiently to minimise loss of catalyst activity from metal sintering or reactor plugging by nickel carbide formation. [Pg.52]


See other pages where Nickel, synthesis is mentioned: [Pg.81]    [Pg.8]    [Pg.225]    [Pg.68]    [Pg.77]    [Pg.247]    [Pg.457]    [Pg.164]    [Pg.180]    [Pg.421]    [Pg.507]    [Pg.438]    [Pg.197]    [Pg.276]    [Pg.10]    [Pg.12]    [Pg.12]    [Pg.14]    [Pg.14]    [Pg.346]    [Pg.346]    [Pg.293]    [Pg.522]    [Pg.219]    [Pg.259]   
See also in sourсe #XX -- [ Pg.770 , Pg.771 , Pg.772 , Pg.773 , Pg.774 , Pg.775 , Pg.776 , Pg.777 , Pg.778 , Pg.779 ]

See also in sourсe #XX -- [ Pg.333 ]

See also in sourсe #XX -- [ Pg.658 ]

See also in sourсe #XX -- [ Pg.37 , Pg.40 ]

See also in sourсe #XX -- [ Pg.178 ]




SEARCH



1,4-Hexadiene synthesis nickel

Applications of Palladium and Nickel Complexes in Natural Product Synthesis

Biaryl synthesis nickel- and palladium-catalyzed reactions

Nickel 248 Inorganic Syntheses

Nickel alloy synthesis catalysts

Nickel aluminides, combustion synthesis

Nickel carbonyl synthesis

Nickel complexes synthesis

Nickel compounds synthesis

Nickel conjugated diene synthesis

Nickel cyclopentenone synthesis

Nickel macrocyclic complexes synthesis

Nickel natural product synthesis

Nickel synthesis activity

Nickel template synthesis

Nickel, tetrakis synthesis

Nickel, tris nitrile synthesis

Nickel-, Cobalt-, and Molybdenum-Catalyzed Indole Ring Syntheses

Nickel-Catalyzed Synthesis of Cyclic Compounds

Nickel-aluminide synthesis

Nickel-catalyzed reactions biaryl synthesis

Nickel-catalyzed reactions natural products synthesis

Phenols, synthesis nickel-catalysed

SYNTHESIS with nickel complexes

Square-planar nickel macrocyclic complexes synthesis

Synthesis Using Nickel or Palladium Complexes

TEMPLATE SYNTHESIS AND MAGNETIC MANIPULATION OF NICKEL NANOWIRES

Ylide Nickel Complex Synthesis

© 2024 chempedia.info