Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel synthesis activity

All steam reforming catalysts in the activated form contain metallic nickel as active component, but the composition and structure of the support and the nickel content differ considerably in the various commercial brands. Thus the theoretical picture is less uniform than for the ammonia synthesis reaction, and the number of scientific publications is much smaller. The literature on steam reforming kinetics published before 1993 is summarized by Rostrup - Nielsen [362], and a more recent review is given by K. Kochloefl [422]. There is a general agreement that the steam reforming reaction is first order with respect to methane, but for the other kinetic parameters the results from experimental investigations differ considerably for various catalysts and reaction conditions studied by a number of researchers. [Pg.72]

Whilst the literature on nickel-catalyzed C—H activation is considerably less extensive than for, say, palladium or iridium, there has been a marked increase in the rate of publication since ca. 2005. Much of the earlier work is summarized in a small number of excellent reviews. - Recent examples of the use of nickel-catalyzed activation in natural product synthesis are summarized in a recent review by Yamaguchi et al. ... [Pg.113]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

The methanation reaction is carried out over a catalyst at operating conditions of 503—723 K, 0.1—10 MPa (1—100 atm), and space velocities of 500—25,000 h . Although many catalysts are suitable for effecting the conversion of synthesis gas to methane, nickel-based catalysts are are used almost exclusively for industrial appHcations. Methanation is extremely exothermic (AT/ qq = —214.6 kJ or —51.3 kcal), and heat must be removed efficiently to minimise loss of catalyst activity from metal sintering or reactor plugging by nickel carbide formation. [Pg.52]

ANILINES, BENZYL AMINES, AND ANALOGUES An orally active local anesthetic agent that can be used as an (intiarrhythmic agent is meobenti ne (57). Its patented synthesis starts with -hydroxyphenyl nitrile and proceeds by dimethyl sulfate etherification and Raney nickel reduction to Alkylation of -methyl-dimethylthiourea with completes l.he synthesis of meobenti ne (57). ... [Pg.45]

The synthesis starts by condensation of readily available optically active (R)-(+)-alpha-methylbenzylamine with 4-phenyl-2-butanone to form an imine which is itself reduced by hy-drogenolysis (Raney nickel) to give a 9 1 mixture of the (R,R)-amine and the (R,S)-amine (4). [Pg.20]

Fischer Tropsch synthesis is catalyzed by a variety of transition metals such as iron, nickel, and cobalt. Iron is the preferred catalyst due to its higher activity and lower cost. Nickel produces large amounts of methane, while cobalt has a lower reaction rate and lower selectivity than iron. By comparing cobalt and iron catalysts, it was found that cobalt promotes more middle-distillate products. In FTS, cobalt produces... [Pg.124]

Molybdenum and tungsten are unique in that they are resistant to sulfur, and, in fact, are commonly sulfided before use. The Bureau of Mines tested a variety of molybdenum catalysts (32). They are moderately active but relatively high temperatures are required in order to achieve good conversion, even at low space velocities. Selectivity to methane was 79-94%. Activity is considerably less than that of nickel. Although they are active with sulfur-bearing synthesis gas, the molybdenum and tungsten catalysts are not sufficiently advanced to be considered candidates for commercial use. [Pg.25]

In experiment HGR-13, the commercial grade precipitated nickel catalyst was in a reduced and stabilized condition when it was charged into the reactor. No special activation treatment was needed. It was, however, kept under hydrogen at all times until the temperature and pressure of the system were brought to synthesis conditions, at which time the synthesis feed gas was gradually fed into the system to start the run. [Pg.99]

In addition to actual synthesis tests, fresh and used catalysts were investigated extensively in order to determine the effect of steam on catalyst activity and catalyst stability. This was done by measurement of surface areas. Whereas the Brunauer-Emmett-Teller (BET) area (4) is a measure of the total surface area, the volume of chemisorbed hydrogen is a measure only of the exposed metallic nickel area and therefore should be a truer measure of the catalytically active area. The H2 chemisorption measurement data are summarized in Table III. For fresh reduced catalyst, activity was equivalent to 11.2 ml/g. When this reduced catalyst was treated with a mixture of hydrogen and steam, it lost 27% of its activity. This activity loss is definitely caused by steam since a... [Pg.130]

The synthesis of aromatic amines is an active and important area of research.2 Many methods are available in the literature for the synthesis of these compounds. Though some of these are widely used, still they have limitations based on safety or handling considerations. For example, catalytic hydrogenation3 of nitro or azido compounds in the presence of metals such as palladium on carbon or Raney nickel require stringent precautions because of their flammable nature in the presence of air. In addition, these methods require compressed hydrogen gas and a vacuum pump to create high pressure within the reaction flask. To overcome these difficulties, several new methods have been reported in the... [Pg.98]

This route provides a convenient method for synthesizing deltacyclenes 89 which have been proven to be useful in the synthesis of highly strained unnatural products of theoretical interest [88]. Diels-Alder reactions of norbornadiene (88) have been successfully activated by a nickel catalyst [89] (Scheme 3.17). Amarked influence of the catalyst on the endo-exo diastereoselectivity has been observed. [Pg.127]

The nickel(II) dithiocarbamate complexes are neutral, water-insoluble, usually square-planar, species, and they have been studied extensively by a range of physical techniques. The usual methods for the synthesis of dithiocarbamate complexes have been employed in the case of Ni(II), Pd(II), and Pt(II). In addition, McCormick and co-workers (330,332) found that CS2 inserted into the Ni-N bonds of [Ni(aziri-dine)4P+, [Nilaziridinelgf, and [Ni(2-methylaziridine)4] to afford dithiocarbamate complexes. The diamagnetic products are probably planar, but they have properties typical of dithiocarbamate complexes, and IR- and electronic-spectral measurements suggested that they may be examples of N,S-, rather than S,S-, bonded dithiocarbamates. The S,S-bonded complexes are however, obtained, by a slow rearrangement in methanol. The optically active lV-alkyl-iV(a-phenethyl)dithio-carbamates of Ni(II), Pd(II), and Cu(II) (XXIV) have been synthesized, and the optical activity was found to be related to the anisotropy of the charge-transfer transitions (332). [Pg.254]

The most important physiological role of CODH in the metabolism of acetogenic bacteria was unknown until 1985, when it was shown that the enzyme is bifunctional and has acetyl-CoA synthase activity (121). It was previously thought that acetyl-CoA was synthesized at the cobalt center of a vitamin-Bi2-containing protein. In the same paper, it was proposed that nickel is the active site of CO oxidation and acetyl-CoA synthesis. [Pg.307]


See other pages where Nickel synthesis activity is mentioned: [Pg.159]    [Pg.450]    [Pg.454]    [Pg.143]    [Pg.76]    [Pg.450]    [Pg.454]    [Pg.128]    [Pg.137]    [Pg.94]    [Pg.380]    [Pg.128]    [Pg.139]    [Pg.539]    [Pg.542]    [Pg.348]    [Pg.350]    [Pg.353]    [Pg.356]    [Pg.164]    [Pg.14]    [Pg.346]    [Pg.62]    [Pg.2097]    [Pg.96]    [Pg.6]    [Pg.58]    [Pg.226]    [Pg.126]    [Pg.86]    [Pg.122]    [Pg.121]    [Pg.194]    [Pg.1109]   
See also in sourсe #XX -- [ Pg.9 , Pg.338 , Pg.350 ]




SEARCH



Nickel activity

Nickel synthesis

© 2024 chempedia.info